Dual-Wavelength Excited Intense Red Upconversion Luminescence from Er3+-Sensitized Y2O3 Nanocrystals Fabricated by Spray Flame Synthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the Y2O3:Er3+/Tm3+ UCNPs
2.3. Instruments and Measurements
3. Results and Discussion
3.1. Structure and Morphology
3.2. Color Tuning under 980 nm Excitation
3.3. Color Tuning under 808 nm Excitation
3.4. Color Tuning under Pulsed Laser Excitation
3.5. Ex Vivo Imaging in Biological Tissue
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wang, F.; Han, Y.; Lim, C.S.; Lu, Y.; Wang, J.; Xu, J.; Chen, H.; Zhang, C.; Hong, M.; Liu, X. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Han, W.; Jia, T.; Dong, S.; Bi, H.; Yang, D.; He, F.; Dai, Y.; Gai, S.; Yang, P. Bioresponsive upconversion nanostructure for combinatorial bioimaging and chemo-photothermal synergistic therapy. Chem. Eng. J. 2018, 342, 446–457. [Google Scholar] [CrossRef]
- Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990–2042. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Deng, R.; Tian, J.; Zong, Y.; Jin, D.; Liu, X. Multicolor barcoding in a single upconversion crystal. J. Am. Chem. Soc. 2014, 136, 4893–4896. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Lin, G.; Clarke, C.; Zhou, J.; Jin, D. Optical nanomaterials and enabling technologies for high-security-level anticounterfeiting. Adv. Mater. 2020, 32, 1901430. [Google Scholar] [CrossRef]
- Shan, J.; Budijono, S.J.; Hu, G.; Yao, N.; Kang, Y.; Ju, Y.; Prud’homme, R.K. Pegylated composite nanoparticles containing upconverting phosphors and meso-tetraphenyl porphine (TPP) for photodynamic therapy. Adv. Funct. Mater. 2011, 21, 2488–2495. [Google Scholar] [CrossRef]
- Wang, F.; Deng, R.; Liu, X. Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes. Nat. Protoc. 2014, 9, 1634–1644. [Google Scholar] [CrossRef]
- Cheng, X.; Pan, Y.; Yuan, Z.; Wang, X.; Su, W.; Yin, L.; Xie, X.; Huang, L. Er3+ sensitized photon upconversion nanocrystals. Adv. Funct. Mater. 2018, 28, 1800208. [Google Scholar] [CrossRef]
- Tu, L.; Liu, X.; Wu, F.; Zhang, H. Excitation energy migration dynamics in upconversion nanomaterials. Chem. Soc. Rev. 2015, 44, 1331–1345. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Yu, H.; Siu, C.K.; Qiu, J.; Xu, X.; Yu, S.F. White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods. ACS Photonics 2017, 4, 1539–1543. [Google Scholar] [CrossRef]
- Chen, B.; Wang, F. Recent advances in the synthesis and application of Yb-based fluoride upconversion nanoparticles. Inorg. Chem. Front. 2020, 7, 1067–1081. [Google Scholar] [CrossRef]
- Wang, Y.F.; Liu, G.Y.; Sun, L.D.; Xiao, J.W.; Zhou, J.C.; Yan, C.H. Nd3+-sensitized upconversion nanophosphors: Efficient in vivo bioimaging probes with minimized heating effect. ACS Nano 2013, 7, 7200–7206. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.; Li, Q.; Xue, B.; Li, C.; Chang, Y.; Zhang, Y.; Liu, X.; Tu, L.; Zhang, H.; Kong, X. Employing shells to eliminate concentration quenching in photonic upconversion nanostructure. Nanoscale 2017, 9, 7941–7946. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Zhou, B.; Song, N.; Liu, X.; Huang, J.; Wang, T.; Tao, L.; Zhang, Q. Self-sensitization induced upconversion of Er3+ in core–shell nanoparticles. Nanoscale 2018, 10, 17949–17957. [Google Scholar] [CrossRef]
- Li, Y.; Wang, T.; Ren, W.; Han, J.; Yin, Z.; Qiu, J.; Yang, Z.; Song, Z. BiOCl:Er3+ nanosheets with tunable thickness for photon avalanche phosphors. ACS Appl. Nano Mater. 2019, 2, 7652–7660. [Google Scholar] [CrossRef]
- Xu, J.; Gulzar, A.; Yang, P.; Bi, H.; Yang, D.; Gai, S.; He, F.; Lin, J.; Xing, B.; Jin, D. Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: Mechanism, design and application for bioimaging. Coord. Chem. Rev. 2019, 381, 104–134. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.; Zhang, L.; Zuo, J.; Zhang, Y.; Liu, X.; Tu, L.; Xue, B.; Chang, Y.; Kong, X. An 800 nm driven NaErF4@NaLuF4 upconversion platform for multimodality imaging and photodynamic therapy. Nanoscale 2018, 10, 12356–12363. [Google Scholar] [CrossRef]
- Wang, X.; Yakovliev, A.; Ohulchanskyy, T.Y.; Wu, L.; Zeng, S.; Han, X.; Qu, J.; Chen, G. Efficient erbium-sensitized core/shell nanocrystals for short wave infrared bioimaging. Adv. Opt. Mater. 2018, 6, 1800690. [Google Scholar] [CrossRef]
- Liu, L.; Wang, S.; Zhao, B.; Pei, P.; Fan, Y.; Li, X.; Zhang, F. Er3+ sensitized 1530 nm to 1180 nm second near-infrared window upconversion nanocrystals for in vivo biosensing. Angew. Chem. Int. Ed. 2018, 57, 7518–7522. [Google Scholar] [CrossRef]
- Lin, H.; Xu, D.; Li, Y.; Yao, L.; Xu, L.; Ma, Y.; Yang, S.; Zhang, Y. Intense red upconversion luminescence in Er3+-sensitized particles through confining the 1532 nm excitation energy. J. Lumin. 2019, 216, 116731. [Google Scholar] [CrossRef]
- Xu, J.; Yang, D.; Han, W.; Dong, S.; Jia, T.; He, F.; Bi, H.; Gai, S.; Li, L.; Yang, P. A novel strategy for markedly enhancing the red upconversion emission in Er3+/Tm3+ cooperated nanoparticles. J. Mater. Chem. C 2018, 6, 7533–7540. [Google Scholar] [CrossRef]
- Chen, Q.; Xie, X.; Huang, B.; Liang, L.; Han, S.; Yi, Z.; Wang, Y.; Li, Y.; Fan, D.; Huang, L.; et al. Confining excitation energy in Er3+-sensitized upconversion nanocrystals through Tm3+-mediated transient energy trapping. Angew. Chem. Int. Ed. 2017, 56, 7605–7609. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Hao, S.; Lv, W.; Chen, T.; Tian, L.; Lei, Z.; Yang, C. Confining excitation energy of Er3+-sensitized upconversion nanoparticles through introducing various energy trapping centers. J. Mater. Chem. C 2018, 6, 3869–3875. [Google Scholar] [CrossRef]
- Rivera, V.A.G.; Ledemi, Y.; El-Amraoui, M.; Messaddeq, Y.; Marega, E., Jr. Green-to-red light tuning by up-conversion emission via energy transfer in Er3+-Tm3+-codoped germanium-tellurite glasses. J. Non-Cryst. Solids 2014, 392, 45–50. [Google Scholar] [CrossRef]
- Gu, Z.; Yan, L.; Tian, G.; Li, S.; Chai, Z.; Zhao, Y. Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv. Mater. 2013, 25, 3758–3779. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, Z.; Zhang, H.; Qiu, J.; Song, Z. Preparation, Growth Mechanism, Upconversion, and near-infrared photoluminescence properties of convex-lens-like NaYF4 microcrystals doped with various rare earth ions excited at 808 nm. Cryst. Growth Des. 2018, 18, 1758–1767. [Google Scholar] [CrossRef]
- Wang, T.; Lin, Y.; Lu, W.; Guo, X.; Qiu, J.; Yu, X.; Zhan, Q.; Yu, S.F.; Xu, X. Growth processes of LuF3 upconversion nanoflakes with the assistance of amorphous nanoclusters. ACS Appl. Nano Mater. 2019, 2, 5254–5259. [Google Scholar] [CrossRef]
- Li, S.; Ren, Y.; Biswas, P.; Tse, S.D. Flame aerosol synthesis of nanostructured materials and functional devices: Processing, modeling, and diagnostics. Prog. Energy Combust. Sci. 2016, 55, 1–59. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Pokhrel, S.; Tessarek, C.; Li, H.; Schowalter, M.; Rosenauer, A.; Eickhoff, M.; Li, S.; Mädler, L. Rare-earth-doped Y4Al2O9 nanoparticles for stable light-converting phosphors. ACS Appl. Nano Mater. 2020, 3, 699–710. [Google Scholar] [CrossRef] [Green Version]
- Hammad, M.; Hardt, S.; Mues, B.; Salamon, S.; Landers, J.; Slabu, I.; Wende, H.; Schulz, C.; Wiggers, H. Gas-phase synthesis of iron oxide nanoparticles for improved magnetic hyperthermia performance. J. Alloys Compd. 2020, 824, 153814. [Google Scholar] [CrossRef]
- Angel, S.; Neises, J.; Dreyer, M.; Friedel Ortega, K.; Behrens, M.; Wang, Y.; Arandiyan, H.; Schulz, C.; Wiggers, H. Spray-flame synthesis of La(Fe, Co)O3 nano-perovskites from metal nitrates. AIChE J. 2020, 66, e16748. [Google Scholar] [CrossRef] [Green Version]
- Meierhofer, F.; Mädler, L.; Fritsching, U. Nanoparticle evolution in flame spray pyrolysis—Process design via experimental and computational analysis. AIChE J. 2020, 66, e16885. [Google Scholar] [CrossRef]
- Hong, H.; Memon, N.K.; Dong, Z.; Kear, B.H.; Tse, S.D. Flame synthesis of gamma-iron-oxide (γ-Fe2O3) nanocrystal films and carbon nanotubes on stainless-steel substrates. Proc. Combust. Inst. 2019, 37, 1249–1256. [Google Scholar] [CrossRef]
- Mädler, L.; Kammler, H.K.; Mueller, R.; Pratsinis, S.E. Controlled synthesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci. 2002, 33, 369–389. [Google Scholar] [CrossRef]
- Strobel, R.; Pratsinis, S.E. Flame aerosol synthesis of smart nanostructured materials. J. Mater. Chem. 2007, 17, 4743–4756. [Google Scholar] [CrossRef]
- Kong, W.; Shan, J.; Ju, Y. Flame synthesis and effects of host materials on Yb3+/Er3+ co-doped upconversion nanophosphors. Mater. Lett. 2010, 64, 688–691. [Google Scholar] [CrossRef]
- Wei, J.; Ren, Y.; Zhang, Y.; Shi, B.; Li, S. Effects of temperature-time history on the flame synthesis of nanoparticles in a swirl-stabilized tubular burner with two feeding modes. J. Aerosol Sci. 2019, 133, 72–82. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Yan, W.; Tse, S.D.; Yao, Q. Synthesis of TiO2 nanoparticles by premixed stagnation swirl flames. Proc. Combust. Inst. 2011, 33, 1925–1932. [Google Scholar] [CrossRef]
- Zong, Y.; Li, S.; Niu, F.; Yao, Q. Direct synthesis of supported palladium catalysts for methane combustion by stagnation swirl flame. Proc. Combust. Inst. 2015, 35, 2249–2257. [Google Scholar] [CrossRef]
- Wei, J.; Li, S.; Ren, Y.; Zhang, Y.; Tse, S.D. Investigating the role of solvent formulations in temperature-controlled liquid-fed aerosol flame synthesis of YAG-based nanoparticles. Proc. Combust. Inst. 2019, 37, 1193–1201. [Google Scholar] [CrossRef]
- Lu, H.; Gillin, W.P.; Hernández, I. Concentration dependence of the up- and down-conversion emission colours of Er3+-doped Y2O3: A time-resolved spectroscopy analysis. Phys. Chem. Chem. Phys. 2014, 16, 20957–20963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Kong, X.; Zhang, Y.; Tu, L.; Wang, Y.; Zeng, Q.; Li, C.; Shi, Z.; Zhang, H. Breakthrough in concentration quenching threshold of upconversion luminescence via spatial separation of the emitter doping area for bio-applications. Chem. Commun. 2011, 47, 11957–11959. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Zhou, J.; Zheng, K.; Bednarkiewicz, A.; Liu, X.; Jin, D. Advances in highly doped upconversion nanoparticles. Nat. Commun. 2018, 9, 2415. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Guo, L.; Zhang, Z.; Li, T.; Chen, P. Enhanced dual-wavelength sensitive red upconversion luminescence in Bi2O3:Yb3+/Er3+ phosphors via optical-inert ions doping. Dyes Pigments 2018, 154, 242–251. [Google Scholar] [CrossRef]
- Luo, L.; Du, P.; Li, W.; Tao, W.; Chen, H. Effects of Er doping site and concentration on piezoelectric, ferroelectric, and optical properties of ferroelectric Na0.5Bi0.5TiO3. J. Appl. Phys. 2013, 114, 124104. [Google Scholar] [CrossRef]
- Tabanli, S.; Bilir, G.; Eryurek, G. Color tunable up-conversion emission from Er3+:Y2O3 nanoparticles embedded in PMMA matrix. J. Lumin. 2017, 182, 146–153. [Google Scholar] [CrossRef]
- Qiao, Y.; Guo, H. Upconversion properties of Y2O3:Er films prepared by sol-gel method. J. Rare Earths 2009, 27, 406–410. [Google Scholar] [CrossRef]
- De, G.; Qin, W.; Zhang, J.; Zhang, J.; Wang, Y.; Cao, C.; Cui, Y. Upconversion luminescence properties of Y2O3:Yb3+, Er3+ nanostructures. J. Lumin. 2006, 119, 258–263. [Google Scholar] [CrossRef]
- Capobianco, J.A.; Vetrone, F.; D’Alesio, T.; Tessari, G.; Speghini, A.; Bettinelli, M. Optical spectroscopy of nanocrystalline cubic Y2O3: Er3+ obtained by combustion synthesis. Phys. Chem. Chem. Phys. 2000, 2, 3203–3207. [Google Scholar] [CrossRef]
- Pollnau, M.; Gamelin, D.R.; Lüthi, S.R.; Güdel, H.U.; Hehlen, M.P. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 2000, 61, 3337–3346. [Google Scholar] [CrossRef]
- Lin, H.; Xu, D.; Li, Y.; Yao, L.; Xu, L.; Ma, Y.; Yang, S.; Zhang, Y. Enhanced Red Emission in Er3+-sensitized NaLuF4 upconversion crystals via energy trapping. Inorg. Chem. 2018, 57, 15361–15369. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Qin, F.; Chen, R.; Huang, W.; Hong, M.; Liu, X. Temporal full-colour tuning through non-steady-state upconversion. Nat. Nanotechnol. 2015, 10, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Suo, H.; Zhang, Z.; Guo, C. Cross-relaxation and non-steady-state processes induced up-conversion color modulation in Gd2O3: Ln3+/Er3+ (Ln = Tm, Ho). Dyes Pigments 2018, 151, 335–341. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Wu, Z.; Yang, Z.; Yang, X.; Zhang, Y.; Yuan, M.; Han, K.; Song, C.; Jiang, Z.; Wang, H.; et al. Dual-Wavelength Excited Intense Red Upconversion Luminescence from Er3+-Sensitized Y2O3 Nanocrystals Fabricated by Spray Flame Synthesis. Nanomaterials 2020, 10, 1475. https://doi.org/10.3390/nano10081475
Zhao X, Wu Z, Yang Z, Yang X, Zhang Y, Yuan M, Han K, Song C, Jiang Z, Wang H, et al. Dual-Wavelength Excited Intense Red Upconversion Luminescence from Er3+-Sensitized Y2O3 Nanocrystals Fabricated by Spray Flame Synthesis. Nanomaterials. 2020; 10(8):1475. https://doi.org/10.3390/nano10081475
Chicago/Turabian StyleZhao, Xiaofan, Zeyun Wu, Zining Yang, Xu Yang, Yiyang Zhang, Maohui Yuan, Kai Han, Changqing Song, Zongfu Jiang, Hongyan Wang, and et al. 2020. "Dual-Wavelength Excited Intense Red Upconversion Luminescence from Er3+-Sensitized Y2O3 Nanocrystals Fabricated by Spray Flame Synthesis" Nanomaterials 10, no. 8: 1475. https://doi.org/10.3390/nano10081475
APA StyleZhao, X., Wu, Z., Yang, Z., Yang, X., Zhang, Y., Yuan, M., Han, K., Song, C., Jiang, Z., Wang, H., Li, S., & Xu, X. (2020). Dual-Wavelength Excited Intense Red Upconversion Luminescence from Er3+-Sensitized Y2O3 Nanocrystals Fabricated by Spray Flame Synthesis. Nanomaterials, 10(8), 1475. https://doi.org/10.3390/nano10081475