Modelling the Shear Banding in Gradient Nano-Grained Metals
Abstract
:1. Introduction
2. Model Description
2.1. Constitutive Model for Gradient Cu
2.2. Generation of the Gradient Microstructure
2.3. The Finite Element Model for the Gradient Cu
3. Results and Discussions
3.1. Shear Band Multiplication in Gradient Nano-Grained Cu
3.2. Effects of Grain Size Distribution on Shear Band Formation
3.3. Effect of Thickness of the Gradient Surface Layer on Shear Band Formation
3.4. Effect of Grain Size of the Topmost Layer in GSL on Shear Band Formation
3.5. Verification of the Computational Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Valiev, R. Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 2004, 3, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, M.; Zhou, F.; Ma, E. High tensile ductility in a nanostructured metal. Nature 2002, 419, 912–915. [Google Scholar] [CrossRef]
- Ritchie, R.O. The conflicts between strength and toughness. Nat. Mater. 2011, 10, 817–822. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhang, H.; Li, W.; Ding, X.; Wang, Y.; Vitos, L. Generalized Stacking Fault Energy of Al-Doped CrMnFeCoNi High-Entropy Alloy. Nanomaterials 2019, 10, 59. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhu, Y.; Jiao, D.; Weng, Z.; Zhang, Z.; Ritchie, R.O. Enhanced protective role in materials with gradient structural orientations: Lessons from Nature. Acta Biomater. 2016, 44, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Fang, T.H.; Li, W.L.; Tao, N.R.; Lu, K. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 2011, 331, 1587–1590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, K. Making strong nanomaterials ductile with gradients. Science 2014, 345, 1455–1456. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Y.; Zhu, L.; Liu, Y.; Lei, X.; Wang, G.; Wu, Y.; Mi, Z.; Liu, J.; Wang, H.; et al. Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat. Commun. 2014, 5, 3580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Jiang, P.; Chen, L.; Yuan, F.; Zhu, Y.T. Extraordinary strain hardening by gradient structure. Proc. Natl. Acad. Sci. USA 2014, 111, 7197–7201. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.L.; Yang, M.X.; Yuan, F.P.; Chen, L.; Zhu, Y.T. Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility. Acta Mater. 2016, 112, 337–346. [Google Scholar] [CrossRef] [Green Version]
- Shao, C.W.; Zhang, P.; Zhu, Y.K.; Zhang, Z.J.; Tian, Y.Z.; Zhang, Z.F. Simultaneous improvement of strength and plasticity: Additional work-hardening from gradient microstructure. Acta Mater. 2018, 145, 413–428. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, X. Perspective on hetero-deformation induced (HDI) hardening and back stress. Mater. Res. Lett. 2019, 7, 393–398. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Ameyama, K.; Anderson, P.M.; Beyerlein, I.J.; Gao, H.; Kim, H.S.; Lavernia, E.; Mathaudhu, S.; Mughrabi, H.; Ritchie, R.O.; et al. Heterostructured materials: Superior properties from hetero-zone interaction. Mater. Res. Lett. 2020, 9, 1–31. [Google Scholar] [CrossRef]
- Di Schino, A. Manufacturing and Applications of Stainless Steels. Metals 2020, 10, 327. [Google Scholar] [CrossRef] [Green Version]
- Järvenpää, A.; Jaskari, M.; Kisko, A.; Karjalainen, P. Processing and Properties of Reversion-Treated Austenitic Stainless Steels. Metals 2020, 10, 281. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.W.; Wang, Z.B.; Lu, J.; Lu, K. Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer. Acta Mater. 2015, 87, 150–160. [Google Scholar] [CrossRef]
- Chen, X.; Han, Z.; Li, X.; Lu, K. Lowering coefficient of friction in Cu alloys with stable gradient nanostructures. Sci. Adv. 2016, 2, e1601942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uusitalo, J.; Karjalainen, L.P.; Retraint, D.; Palosaari, M. Fatigue Properties of Steels with Ultrasonic Attrition Treated Surface Layers. Mater. Sci. Forum 2008, 604-605, 239–248. [Google Scholar] [CrossRef]
- Li, J.; Chen, T.; Chen, T.; Lu, W. Enhanced frictional performance in gradient nanostructures by strain delocalization. Int. J. Mech. Sci. 2021, 201, 106458. [Google Scholar] [CrossRef]
- Wang, Y.F.; Huang, C.X.; Wang, M.S.; Li, Y.S.; Zhu, Y.T. Quantifying the synergetic strengthening in gradient material. Scripta Mater. 2018, 150, 22–25. [Google Scholar] [CrossRef]
- Cao, R.; Yu, Q.; Pan, J.; Lin, Y.; Sweet, A.; Li, Y.; Ritchie, R.O. On the exceptional damage-tolerance of gradient metallic materials. Mater. Today 2020, 32, 94–107. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, Z.; Lu, L.; Zhu, T. Strain gradient plasticity in gradient structured metals. J. Mech. Phys. Solids 2020, 140, 103946. [Google Scholar] [CrossRef]
- Wu, X.; Yang, M.; Li, R.; Jiang, P.; Yuan, F.; Wang, Y.; Zhu, Y.; Wei, Y. Plastic accommodation during tensile deformation of gradient structure. Sci. China Mater. 2021, 64, 1534–1544. [Google Scholar] [CrossRef]
- Wang, X.; Li, T.; Gao, Y. What really governs the upper bound of uniform ductility in gradient or layered materials? Extrem. Mech. Lett. 2021, 48, 101413. [Google Scholar] [CrossRef]
- Gleiter, H. Nanocrystalline materials. Prog. Mater. Sci. 1989, 33, 223–315. [Google Scholar] [CrossRef] [Green Version]
- Meyers, M.A.; Mishra, A.; Benson, D.J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 2006, 51, 427–556. [Google Scholar] [CrossRef]
- Bordignon, N.; Piccolroaz, A.; Dal Corso, F.; Bigoni, D. Strain Localization and Shear Band Propagation in Ductile Materials. Front. Mater. 2015, 2, 22. [Google Scholar] [CrossRef] [Green Version]
- Rice, J.R. Localization of plastic deformation. In Proceedings of the 14th International Congress of Theoretical and Applied Mechanics, Delft, The Netherlands, 30 August 1976. [Google Scholar]
- Wei, Q.; Kecskes, L.; Jiao, T.; Hartwig, K.T.; Ramesh, K.T.; Ma, E. Adiabatic shear banding in ultrafine-grained Fe processed by severe plastic deformation. Acta Mater. 2004, 52, 1859–1869. [Google Scholar] [CrossRef]
- Jia, D.; Ramesh, K.T.; Ma, E. Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron. Acta Mater. 2003, 51, 3495–3509. [Google Scholar] [CrossRef]
- Gunti, A.; Jana, P.P.; Lee, M.H.; Das, J. Effect of Cold Rolling on the Evolution of Shear Bands and Nanoindentation Hardness in Zr41.2Ti13.8Cu12.5Ni10Be22.5 Bulk Metallic Glass. Nanomaterials 2021, 11, 1670. [Google Scholar] [CrossRef]
- Greer, A.L.; Cheng, Y.Q.; Ma, E. Shear bands in metallic glasses. Mater. Sci. Eng. R Rep. 2013, 74, 71–132. [Google Scholar] [CrossRef]
- Chen, M. A brief overview of bulk metallic glasses. NPG Asia Mater. 2011, 3, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; You, Z.S.; Tao, N.R.; Jin, Z.H.; Lu, L. Mechanically-induced grain coarsening in gradient nano-grained copper. Acta Mater. 2017, 125, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Yan, D.; Sun, J.; Zhou, L.; Zhu, Y.; Wu, X. Ductility by shear band delocalization in the nano-layer of gradient structure. Mater. Res. Lett. 2018, 7, 12–17. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, F.; He, Q.; Song, L.; Wang, M.; Huang, A.; Li, Y.; Huang, C. Synergetic deformation-induced extraordinary softening and hardening in gradient copper. Mater. Sci. Eng. A 2019, 752, 217–222. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, C.; Li, Y.; Guo, F.; He, Q.; Wang, M.; Wu, X.; Scattergood, R.O.; Zhu, Y. Dense dispersed shear bands in gradient-structured Ni. Int. J. Plast. 2020, 124, 186–198. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, C.; Li, Z.; Fang, X.; Wang, M.; He, Q.; Guo, F.; Zhu, Y. Shear band stability and uniform elongation of gradient structured material: Role of lateral constraint. Extrem. Mech. Lett. 2020, 37, 100686. [Google Scholar] [CrossRef]
- Li, J.J.; Soh, A.K. Modeling of the plastic deformation of nanostructured materials with grain size gradient. Int. J. Plast. 2012, 39, 88–102. [Google Scholar] [CrossRef]
- Li, J.; Weng, G.J.; Chen, S.; Wu, X. On strain hardening mechanism in gradient nanostructures. Int. J. Plast. 2017, 88, 89–107. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Lu, W.; Chen, S.; Liu, C. Revealing extra strengthening and strain hardening in heterogeneous two-phase nanostructures. Int. J. Plast. 2020, 126, 102626. [Google Scholar] [CrossRef]
- Li, J.; Chen, S.; Weng, G.J.; Lu, W. A micromechanical model for heterogeneous nanograined metals with shape effect of inclusions and geometrically necessary dislocation pileups at the domain boundary. Int. J. Plast. 2021, 144, 103024. [Google Scholar] [CrossRef]
- Mecking, H.; Kocks, U.F. Kinetics of flow and strain-hardening. Acta Metall. 1981, 29, 1865–1875. [Google Scholar] [CrossRef]
- Estrin, Y. Dislocation-Density-Related Constitutive Modeling. In Unified Constitutive Laws of Plastic Deformation; Krausz, A.S., Krausz, K., Eds.; Academic Press: San Diego, CA, USA, 1996; pp. 69–106. [Google Scholar]
- Hall, E.O. The Deformation and Ageing of Mild Steel: III Discussion of Results. Proc. Phys. Soc. Sect. B 1951, 64, 747. [Google Scholar] [CrossRef]
- Li, W.L.; Tao, N.R.; Lu, K. Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment. Scripta Mater. 2008, 59, 546–549. [Google Scholar] [CrossRef]
- Kocks, U.F. The relation between polycrystal deformation and single-crystal deformation. Metall. Mater. Trans. B 1970, 1, 1121–1143. [Google Scholar] [CrossRef]
- Kim, H.S.; Estrin, Y.; Bush, M.B. Plastic deformation behaviour of fine-grained materials. Acta Mater. 2000, 48, 493–504. [Google Scholar] [CrossRef]
- Hansen, N. Hall–Petch relation and boundary strengthening. Scripta Mater. 2004, 51, 801–806. [Google Scholar] [CrossRef]
- Wang, Y.M.; Wang, K.; Pan, D.; Lu, K.; Hemker, K.J.; Ma, E. Microsample tensile testing of nanocrystalline copper. Scripta Mater. 2003, 48, 1581–1586. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Chen, X.; Huang, X.; Lu, K. Revealing the maximum strength in nanotwinned copper. Science 2009, 323, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Xu, W.; Wang, X.; Rong, Y. Measurement of microstructural parameters of nanocrystalline Fe–30wt.%Ni alloy produced by surface mechanical attrition treatment. J. Alloys Compd. 2009, 474, 546–550. [Google Scholar] [CrossRef]
- Li, W.; Liu, P.; Ma, F.; Rong, Y. Microstructural characterization of nanocrystalline nickel produced by surface mechanical attrition treatment. J. Mater. Sci. 2009, 44, 2925–2930. [Google Scholar] [CrossRef]
- Bahl, S.; Suwas, S.; Ungàr, T.; Chatterjee, K. Elucidating microstructural evolution and strengthening mechanisms in nanocrystalline surface induced by surface mechanical attrition treatment of stainless steel. Acta Mater. 2017, 122, 138–151. [Google Scholar] [CrossRef]
- Bigelow, S.; Shen, Y.-L. Indentation-Induced Shear Band Formation in Thin-Film Multilayers. Front. Mater. 2017, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Champion, Y.; Langlois, C.; Guerin-Mailly, S.; Langlois, P.; Bonnentien, J.L.; Hytch, M.J. Near-perfect elastoplasticity in pure nanocrystalline copper. Science 2003, 300, 310–311. [Google Scholar] [CrossRef]
- Li, Y.J.; Blum, W.; Breutinger, F. Does nanocrystalline Cu deform by Coble creep near room temperature? Mater. Sci. Eng. A 2004, 387–389, 585–589. [Google Scholar] [CrossRef]
- Jia, N.; Roters, F.; Eisenlohr, P.; Raabe, D.; Zhao, X. Simulation of shear banding in heterophase co-deformation: Example of plane strain compressed Cu–Ag and Cu–Nb metal matrix composites. Acta Mater. 2013, 61, 4591–4606. [Google Scholar] [CrossRef]
- Ward, D.K.; Curtin, W.A.; Qi, Y. Aluminum–silicon interfaces and nanocomposites: A molecular dynamics study. Compos. Sci. Technol. 2006, 66, 1151–1161. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, M. Mechanical behaviors of nanocrystalline Cu/SiC composites: An atomistic investigation. Comput. Mater. Sci. 2017, 129, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Cao, P. The Strongest Size in Gradient Nanograined Metals. Nano Lett. 2020, 20, 1440–1446. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Fang, Q.; Li, J.; Wu, H. Origin of strengthening-softening trade-off in gradient nanostructured body-centred cubic alloys. J. Alloys Compd. 2019, 775, 270–280. [Google Scholar] [CrossRef]
- Lu, K.; Lu, J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater. Sci. Eng. A 2004, 375–377, 38–45. [Google Scholar] [CrossRef] [Green Version]
- Rupert, T.J. Strain localization in a nanocrystalline metal: Atomic mechanisms and the effect of testing conditions. J. Appl. Phys. 2013, 114, 033527. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhou, J.; Ma, L.; Xu, N.; Zhu, R.; He, X. Continuum level simulation on the deformation behavior of nanocrystalline nickel. Comput. Mater. Sci. 2009, 45, 390–397. [Google Scholar] [CrossRef]
- Wang, Y.F.; Huang, C.X.; He, Q.; Guo, F.J.; Wang, M.S.; Song, L.Y.; Zhu, Y.T. Heterostructure induced dispersive shear bands in heterostructured Cu. Scripta Mater. 2019, 170, 76–80. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.S.; Zhang, Q.; Zhao, Y.H.; Zhu, Y.T. Gradient Structured Copper by Rotationally Accelerated Shot Peening. J. Mater. Sci. Technol. 2017, 33, 758–761. [Google Scholar] [CrossRef]
- Yuan, C.; Fu, R.; Sang, D.; Yao, Y.; Zhang, X. The tensile properties and fracture behavior of gradient nano-grained/coarse-grained zirconium. Mater. Lett. 2013, 107, 134–137. [Google Scholar] [CrossRef]
- Yin, F.; Hu, S.; Xu, R.; Han, X.; Qian, D.; Wei, W.; Hua, L.; Zhao, K. Strain rate sensitivity of the ultrastrong gradient nanocrystalline 316L stainless steel and its rate-dependent modeling at nanoscale. Int. J. Plast. 2020, 129, 102696. [Google Scholar] [CrossRef]
Parameter | Symbol | Nanocrystalline | Microcrystalline |
---|---|---|---|
Young’s modulus (GPa) | 121.1 | 121.1 | |
Shear modulus (GPa) | 42.1 | 42.1 | |
Poisson’s ratio | 0.36 | 0.36 | |
Magnitude of the burgers vector (nm) | 0.256 | 0.256 | |
Taylor factor | 3.06 | 3.06 | |
Taylor constant | 0.26 | 0.37 | |
Hall-Petch slope ) | 0.12 | 0.14 | |
Lattice frictional stress (MPa) | 48 | 20 | |
Proportionality factor | 0.0385 | 0.0166 | |
Dynamic recovery factor | 17 | 2.2 | |
Dynamic recovery constant 1 | 12.28 | 1.6 | |
Dynamic recovery constant 2 | 21.25 | 21.25 | |
Geometric factor | 0.45 | 0.27 | |
Reference grain size (μm) | 0.82 | 2.05 | |
Initial dislocation density ) | 0 | ||
Grain size (μm) | <0.5 | 0.5–36 |
Parameter | Symbol | Value |
---|---|---|
Length of the model (μm) | L | 200 |
Total thickness of the model (μm) | H | 150 |
Thickness of the GSL (μm) | hg | 25–100 |
Grain size of the topmost layer (nm) | d1 | 100–300 |
Grain size of the CG core (μm) | dc | 36 |
Grain size distribution index | n | 0.1–2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Li, J. Modelling the Shear Banding in Gradient Nano-Grained Metals. Nanomaterials 2021, 11, 2468. https://doi.org/10.3390/nano11102468
Chen T, Li J. Modelling the Shear Banding in Gradient Nano-Grained Metals. Nanomaterials. 2021; 11(10):2468. https://doi.org/10.3390/nano11102468
Chicago/Turabian StyleChen, Tianyu, and Jianjun Li. 2021. "Modelling the Shear Banding in Gradient Nano-Grained Metals" Nanomaterials 11, no. 10: 2468. https://doi.org/10.3390/nano11102468
APA StyleChen, T., & Li, J. (2021). Modelling the Shear Banding in Gradient Nano-Grained Metals. Nanomaterials, 11(10), 2468. https://doi.org/10.3390/nano11102468