Effect of Metal Nanopowders on the Performance of Solid Rocket Propellants: A Review
Abstract
:1. Introduction
2. Nano Al
2.1. Coating of nAl
2.1.1. Carbon Coating
2.1.2. Metal Coating
2.1.3. Metal Oxide Coating
2.1.4. Organic Acid Coating
2.1.5. Polymer Coating
2.1.6. Energetic Materials Coating
2.1.7. Fluoride Coating
2.1.8. Other Materials Coating
2.2. Evaluation of Active Aluminum Content (AAC)
2.3. Combustion Enhancement of nAl on Solid Propellants
2.3.1. nAl Effects on the Combustion Performance of HTPB-Based Composite Propellants
2.3.2. nAl Effects on the Combustion Performance of NEPE Propellants
2.3.3. nAl Effects on the Combustion Performance of CMDB Propellants
3. Nano Ni (nNi)
4. Nano Ti (nTi), Nano Zr (nZr), and More
5. Prospects and Future Trends of Metal Nanopowders
6. Conclusions
- (1)
- Addition of nAl is beneficial to improve the burning rate and possibly reduce the burning rate pressure exponent, but at the same time, the low active Al content of nAl powder leads to a reduction the heat of explosion of propellants.
- (2)
- A core–shell structure of nanoparticles can be obtained, and the burning rate of solid propellants can be increased using different material coatings on the surface of nAl. The addition of nTi, nZr can increase the density of propellant, while the heat of explosion of propellant decreases.
- (3)
- Within the current rocket propulsion technology, mostly laboratory level applications of metal nanopowders are reported and often for scientific purposes; much work is needed for the applications of metal nanopowders at an industrial level.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, W.; Liu, P.J.; He, G.Q.; Gozin, M.; Yan, Q.L. Highly reactive metastable intermixed composites (MICs): Preparations and characterizations. Adv. Mater. 2018, 30, 1706293. [Google Scholar] [CrossRef] [PubMed]
- Pang, W.Q.; Fan, X.Z.; Zhang, Z.P. Nano-Sized Metal Powder: Preparation, Characterization and Energetic Application; National Defense Industry Press: Beijing, China, 2016. [Google Scholar]
- Pang, W.Q.; Fan, X.Z.; Wang, K.; Chao, Y.M.; Xu, H.X.; Qin, Z.; Zhao, F.Q. Al-based nano-sized composite energetic materials (nano-CEMs): Preparation, characterization, and performance. Nanomaterials 2020, 10, 1039. [Google Scholar] [CrossRef]
- Kumar, R.; Siril, P.F.; Soni, P. Tuning the particle size and morphology of high energetic material nanocrystals. Def. Technol. 2015, 11, 382–389. [Google Scholar] [CrossRef] [Green Version]
- Carole, R. Al-Based Energetic Nano Materials: Design, Manufacturing, Properties and Applications; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Rossi, C. Nano-energetic materials for MEMS: A review. J. Micro Electro Mech. Syst. 2007, 16, 919–931. [Google Scholar] [CrossRef] [Green Version]
- Pang, W.Q.; DeLuca, L.T.; Gromov, A.; Cumming, A.S. Innovative Energetic Materials: Properties, Combustion Performance and Application; Springer: Taramani, India, 2020. [Google Scholar]
- Zeng, C.C.; Yang, Z.J.; Wen, Y.S.; He, W.; Zhang, J.H.; Wang, J.; Huang, C.; Gong, F.Y. Performance optimization of core-shell HMX@(Al@GAP) aluminized explosives. Chem. Eng. J. 2021, 407, 126360. [Google Scholar] [CrossRef]
- Pang, W.Q.; DeLuca, T.L.; Fan, X.Z.; Wang, K.; Li, J.Q.; Zhao, F.Q. Progress on modification of high active aluminum powder and combustion agglomeration in chemical propellants. J. Solid Rocket Technol. 2019, 42, 42–53. [Google Scholar]
- Liu, P.A.; Liu, J.P.; Wang, M.J. Ignition and combustion of nano-sized aluminum particles: A reactive molecular dynamics study. Combust. Flame 2019, 201, 276–289. [Google Scholar] [CrossRef]
- DeLisio, B.J.; Hu, X.; Wu, T.; Egan, G.C.; Young, G.; Zachariah, M.R. Probing the reaction mechanism of aluminum/poly(vinylidene fluoride) composites. J. Phys. Chem. B 2016, 120, 5534–5542. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Deng, S.; Hong, S.; Tiwari, S.; Chen, H.; Nomura, K.; Kalia, R.K.; Nakano, A.; Vashishta, P.; Zachariah, M.R.; et al. Synergistically chemical and thermal coupling between graphene oxide and graphene fluoride for enhancing aluminum combustion. ACS Appl. Mater. Interfaces 2020, 12, 7451–7458. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Yang, Z.; Li, Y.; Zheng, B.; Yan, Q.; Guan, L.; Luo, G.; Li, S.; Nie, F. Incorporation of high explosives into nano-aluminum based microspheres to improve reactivity. Chem. Eng. J. 2020, 383, 123110. [Google Scholar] [CrossRef]
- Lefrancois, A.; Legallic, C. Expertise of nanometric aluminium powder on the detonation efficiency of explosives. In Proceedings of the 32nd International Annual Conference of ICT, Virtual, 3–6 July 2001. [Google Scholar]
- Jacob, R.J.; Wei, B.; Zachariah, M.R. Quantifying the enhanced combustion characteristics of electrospray assembled aluminum mesoparticles. Combust. Flame 2016, 167, 472–480. [Google Scholar] [CrossRef]
- He, W.; Ao, W.; Yang, G.; Yang, Z.; Guo, Z.; Liu, P.J.; Yan, Q.L. Metastable energetic nanocomposites of MOF-activated aluminum featured with multi-level energy releases. Chem. Eng. J. 2020, 381, 122623. [Google Scholar] [CrossRef]
- Ma, Z.; Gao, B.; Wu, P.; Facile, S.J. Continuous and large-scale production of coreshell HMX@TATB composites with superior mechanical properties by a spraydrying process. RSC Adv. 2015, 5, 21042–21049. [Google Scholar] [CrossRef]
- Lin, C.; Zeng, C.; Wen, Y.; Gong, F.; He, G.; Li, Y.; Yang, Z.; Ding, L.; Li, J.; Guo, S. Litchilike core-shell HMX@HPW@PDA microparticles for polymer-bonded energetic composites with low sensitivity and high mechanical properties. ACS Appl. Mater. Interfaces 2020, 12, 4002–4013. [Google Scholar] [CrossRef]
- Gong, F.; Zhang, J.; Ding, L.; Yang, Z.; Liu, X. Mussel-inspired coating of energetic crystals: A compact core-shell structure with highly enhanced thermal stability. Chem. Eng. J. 2017, 309, 140–150. [Google Scholar] [CrossRef]
- Zeng, C.; Wang, J.; He, G.; Yang, Z.; Liu, S.; Gong, F. Enhanced water resistance and energy performance of core-shell aluminum nanoparticles via in situ grafting of energetic glycidyl azide polymer. J. Mater. Sci. 2018, 53, 12091–12102. [Google Scholar] [CrossRef]
- Pang, W.Q.; DeLuca, L.T.; Xu, H.X.; Fan, X.Z.; Zhao, F.Q.; Liu, Y.F.; Xie, W.X.; Li, H.Y. Effect of nano-metric aluminum powder on the properties of composite solid propellants. Int. J. Energetic Mater. Chem. Propuls. 2015, 14, 265–282. [Google Scholar] [CrossRef]
- DeLuca, L.T. Nanoenergetic Ingredients to Augment Solid Rocket Propulsion. In Nanomaterials in Rocket Propulsion Systems; Yan, Q.L., He, G.Q., Liu, P.J., Gozin, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Li, X.H. Preparation and Activity Maintenance of Organic Coated Nano Aluminum Powder; Nanjing Normal University: Nanjing, China, 2017. [Google Scholar]
- Ma, X.X.; Li, Y.X.; Hussain, I.; Shen, R.Q.; Yang, G.C.; Zhang, K.L. Core-shell structured nanoenergetic materials: Preparation and fundamental properties. Adv. Mater. 2020, 32, 2001291. [Google Scholar] [CrossRef] [PubMed]
- Ruoff, R.S.; Lorents, D.C.; Chan, B.; Malhotra, R.; Subramoney, S. Single crystal metals encapsulated in carbon nanoparticles. Science 1993, 259, 346–348. [Google Scholar] [CrossRef]
- Park, K.; Rai, A.; Zachariah, M.R. Characterizing the coating and size-resolved oxidative stability of carbon-coated aluminum nanoparticles by single-panicle mass-spectrometry. J. Nanoparticle Res. 2006, 8, 455–464. [Google Scholar] [CrossRef]
- Zhang, X.T.; Song, W.L.; Guo, L.G.; Xie, C.S.; Hu, M.L. Preparation of carbon-coated aluminum nanoparticles. J. Solid Rocket Technol. 2007, 30, 338–342. [Google Scholar]
- Spalding, M.J.; Krier, H.; Burton, R.L. Boron suboxides measured during ignition and combustion of boron m shocked Ar/F/O2 and Ar/N2/O2 mixtures. Combust. Flame 2000, 120, 200–210. [Google Scholar] [CrossRef]
- Kwon, Y.S.; Gromov, A.A.; Ilyin, A.P. Reactivity of superfine aluminum powders stabilized by aluminum diboride. Combust. Flame 2002, 131, 349–352. [Google Scholar] [CrossRef]
- Klengel, R.; Klengel, S.; Schischka, J.; Lorenz, G.; Petzold, M. Improvement of nickel wire bonding using Al nano coating. In Proceedings of the 5th Electronics System-Integration Technology Conference (ESTC), Helsinki, Finland, 16–18 September 2014. [Google Scholar]
- Qiu, H.L.; Yin, G. A Preparation Method of Core Shell Structure Functional Coating Nano Al-Ni Powder. CN200710056768, 13 August 2008. [Google Scholar]
- Jiang, Z.; Li, S.F.; Zhao, F.Q.; Liu, Z.R.; Yin, C.M.; Luo, Y.; Li, S.W. Research on the combustion properties of propellants with low content of llano metal powders. Propellants Explos. Pyrotech. 2010, 31, 139–147. [Google Scholar]
- Cheng, Z.P.; Yang, Y.; Wang, Y.; Li, M.M.; Li, F.S. Oxidation ability of nanocrystalline Ni-coated Al powders. Acta Phys. Chim. Sin. 2008, 23, 152–156. [Google Scholar]
- Jiang, H.C. Comparative Study on Properties of Thermite Composed of Nano Aluminum Powder with Different Particle Sizes; Nanjing University of Science and Technology: Nanjing, China, 2013. [Google Scholar]
- Badiola, C.; Schoenitz, M.; Zhu, X.Y.; Dreizin, E.D. Nanocomposite thermite powders prepared by cryomilling. J. Alloys Compd. 2009, 488, 386–391. [Google Scholar] [CrossRef]
- Tillotson, T.M.; Gash, A.E.; Simpson, R.L.; Hrubesh, L.W.; Poco, J.F. Nanostructured energetic materials using sol-gel methodologies. J. Non-Cryst. Solids 2001, 285, 338–345. [Google Scholar] [CrossRef] [Green Version]
- Schoenitz, M.; Umbrajkar, S.M.; Dreizin, E.L. Kinetic analysis of thermite reactions in Al-MoO3 nanocomposites. J. Propuls. Power 2015, 23, 683–687. [Google Scholar] [CrossRef]
- Xu, D.G.; Yang, Y.; Cheng, H.; Li, Y.Y.; Zhang, K.L. Integration of nano-A1 with Co3O4, nanorods to realize high-exothermic core-shell nanoenergetic materials on a silicon substrate. Combust. Flame 2012, 159, 2202–2209. [Google Scholar] [CrossRef]
- Lewis, W.K.; Rosenberger, A.T.; Gord, J.R.; Crouse, C.A.; Harruff, B.A.; Fernando, K.A.S.; Smith, M.J.; Phelps, D.K.; Spowart, J.E.; Guliants, E.A.; et al. Multispectroscopic (FTIR, XPS, and TOFMS-TPD) investigation of the core-shell bonding in sonochemically prepared aluminum nanoparticles capped with oleic acid. J. Phys. Chem. C 2010, 114, 6377–6380. [Google Scholar] [CrossRef]
- Yu, Q.Q.; Qiao, Z.W.; Ma, S.H. Research progress of nano aluminum powder surface coating modification and active aluminum analysis. Conteporary Chem. Ind. 2020, 49, 2306–2309. [Google Scholar]
- Femando, K.A.S.; Smith, M.J.; Harruff, B.A.; Lewis, W.K.; Guliants, E.A.; Bunker, C.E. Sonochemically Assisted Thermal Decomposition of Alane N,N-Dimethylethylamine with Titanium (IV) Isopropoxide in the Presence of Oleic Acid to Yield Air-Stable and Size-Selective Aluminum CoreShell Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Yao, E.G.; Zhao, F.Q.; Gao, H.X.; Xu, S.Y.; Hu, R.Z.; Hao, H.X.; An, T.; Pei, Q.; Xiao, L.B. Thermal behavior and non-isothermal decomposition reaction kinetics of aluminum nanopowders coated with an oleic acid/Hexogen composite system. Acta Phys.Chim. Sin. 2012, 28, 781–786. [Google Scholar]
- Du, T.K.; Zhu, B.Z.; Li, H.; Liu, Y.W.; Sun, Y.L. Combustion characterization of nano-aluminum coated by stearic acid. J. Anhui Univ. Technol. Nat. Sci. 2016, 33, 23–27. [Google Scholar]
- Gromov, A.A.; Förter-Barth, U.; Teipel, U. Aluminum nanopowders produced by electrical explosion of wires and passivated by non-inert coatings: Characterisation and reactivity with air and water. Powder Technol. 2006, 164, 111–115. [Google Scholar] [CrossRef]
- Gromov, A.A.; Ilyin, A.; Förter-Barth, U.; Teipel, U. Characterization of aluminum powders: II. Aluminum nanopowders passivated by non-inert coatings. Propellants Explos. Pyrotech. 2006, 31, 401–409. [Google Scholar] [CrossRef]
- Liu, T.; Shao, H.; Li, X. Synthesis of Fe-A1 nanopart Mes by hydrogen plasma-metal reaction. J. Phys. Condens. Matter. 2003, 15, 2507. [Google Scholar] [CrossRef]
- Yao, E.G.; Zhao, F.Q.; Hao, H.X.; Xu, S.Y.; Gao, H.X.; Li, X. Preparation of aluminum nanopowders coated with perfluorotetradecanoic acid and its ignition and combustion characteristics. Chin. J. Explos. Propellants 2012, 35, 70–75. [Google Scholar]
- Bocanegra, P.E.; Chauveau, C.; Gökalp, I. Experimental studies on the burning of coated and uncoated micro and nano-sized aluminum particles. Aerosp. Sci. Technol. 2007, 11, 33–38. [Google Scholar] [CrossRef]
- Li, X.L.; Zhao, F.Q.; Gao, H.X.; Yao, E.G.; Yi, J.H.; An, T.; Hao, H.X.; Tan, Y. Preparation, characterization and effects on thermal decomposition of ADN of nano Al/GAP composite particles. J. Propuls. Technol. 2014, 5, 694–700. [Google Scholar]
- Zeng, C.C.; Gong, F.Y.; Liu, S.J. Effect of Al@GAP composite particles on thermal decomposition performance of LLM-105. Chin. J. Explos. Propellants 2017, 40, 27–32. [Google Scholar]
- Vorozhtsov, A.B.; DeLuca, L.T.; Reina, A.; Lerner, M.I. Effects of HTPB-coating on nano-sized aluminum. Sci. Technol. Energ. Mater. 2015, 76, 105–109. [Google Scholar]
- Kwon, Y.S.; Gromov, A.A.; Strokova, J.I. Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin. Appl. Surf. Sci. 2007, 253, 5558–5564. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Zhao, F.Q.; Xu, J.; Xu, S.Y.; Xiao, L.B.; Yi, J.H.; Cha, M.X. A preparation Method of Energetic Nano Al/RDX Core-Shell Composite Particles. CN103182505A, 3 July 2013. [Google Scholar]
- Gany, A. Thermodynamic limitation on boron energy realization in ramjet propulsion. Acta Astronaut. 2014, 98, 128–132. [Google Scholar] [CrossRef]
- Dubois, C.; Lafleur, P.G.; Roy, C.; Brousseau, P.; Stowe, R.A. Polymer grafted metal nanoparticles for fuel applications. J. Propuls. Power 2007, 23, 651–658. [Google Scholar] [CrossRef]
- Yan, T.; Ren, H.; Ma, A.E.; Jiao, Q.J.; Wang, H.X. Effect of fluororubber coating on the properties of nano-aluminum powders. Acta Armamentarii 2019, 40, 1611–1617. [Google Scholar]
- Qin, Z.; Paravan, C.; Colombo, G.; DeLuca, L.T.; Shen, R.Q.; Ye, Y.H. Effect of fluorides coated nano-aluminum powder on combustion properties of HTPB based fuels. Chin. J. Explos. Propellants 2014, 37, 61–65. [Google Scholar]
- Ye, M.Q.; Zhang, S.T.; Liu, S.S.; Han, A.J.; Chen, X. Preparation and characterization of pyrotechnics binder-coated nano-aluminum composite particles. J. Energ. Mater. 2017, 35, 300–313. [Google Scholar] [CrossRef]
- Wang, T. Thermal Reaction Characteristics and Reaction Kinetics of Coated Nano Aluminum Powder in Carbon Dioxide Atmosphere; Anhui University of Technology: Hefei, China, 2016. [Google Scholar]
- Wang, Q.C.; Zhu, B.Z.; Sun, Y.L.; Wang, T. Thermal reaction characteristics and ignition combustion characteristics of nano-aluminum powder Coated with ammonium perchlorate in carbon dioxide. Chin. J. Process Eng. 2017, 17, 271–277. [Google Scholar]
- Tan, C.D. Research on Equipment and Process of Organic Coated Nano Aluminum Powder; Huazhong University of Science and Technology: Wuhan, China, 2012. [Google Scholar]
- Xiao, C.; Zhu, Q.; Xie, J. PDA coated aluminum powder and its dispersion stability in HTPB. J. Explos. Explos. 2017, 40, 60–63. [Google Scholar]
- Gao, D.L.; Zhang, W.; Zhu, H.; Liu, X.C. Application of nano-aluminum in composite propellant. J. Solid Rocket Technol. 2007, 30, 420–423. [Google Scholar]
- Lv, J. Study on Determination Method of Elemental Aluminum Content in Nano Aluminum Powder; Huazhong University of Science and Technology: Wuhan, China, 2009. [Google Scholar]
- Duan, H. Study on Activity Characterization Methods of Aluminum Nanoparticles; Huazhong University of Science and Technology: Wuhan, China, 2008. [Google Scholar]
- Fedotova, T.D.; Glotov, O.G.; Zarko, V.E. Chemical analysis of aluminum as a propellant ingredient and determination of aluminum and aluminum nitride in condensed combustion products. Propellants Explos. Pyrotech. 2000, 25, 325–332. [Google Scholar] [CrossRef]
- Chen, L. Establishment of Activity Evaluation Method of Nano Aluminum Powder and Research on Additional Energy Storage; Huazhong University of Science and Technology: Wuhan, China, 2009. [Google Scholar]
- Yao, E.G.; Zhao, F.Q.; An, T.; Gao, H.X.; Hao, H.X.; Pei, Q. Progress on evaluation methods of the activity of Al nanopowders. J. Solid Rocket Technol. 2011, 34, 603–608. [Google Scholar]
- Kim, K. High energy pulsed plasma arc synthesis and material characteristics of nanosized aluminum powder. Met. Mater. Int. 2008, 14, 707–711. [Google Scholar] [CrossRef]
- Sun, J.; Simon, S.L. The melting behavior of aluminum nanoparticles. Thermochim. Acta 2007, 463, 32–40. [Google Scholar] [CrossRef]
- Guo, L.G. Preparation of Core/Shell Structure Nano Aluminum Powder and Study on Its Activity Change Law; Huazhong University of Science and Technology: Wuhan, China, 2008. [Google Scholar]
- Zeng, L.; Jiao, Q.J.; Ren, H.; Zhou, Q. Effect of particle size of nano-aluminum powder on oxide film thickness and active aluminum content. Chin. J. Explos. Propellants 2011, 34, 26–29. [Google Scholar]
- Wang, J.K.; Chen, J.; Sun, H.L.; Yu, Q.; Yang, X.L.; Suo, Z.R.; Sun, J.; Yin, Y. Review on micro-nano aluminum oxidation kinetics. Chin. J. Energetic Mater. 2021, 29, 251–266. [Google Scholar]
- Gromov, A.A.; Strokova, Y.I.; Ditts, A.A. Passivation films on particles of electro explosion aluminum nanopowders: A review. Russ. J. Phys. Chem. B 2010, 4, 156–169. [Google Scholar] [CrossRef]
- He, L.R.; Xiao, L.Q.; Ding, H.Q.; Zhou, W.L. TG-DSC research of shell’s effect on activity of nano-aluminum powder. Ordnance Mater. Sci. Eng. 2013, 36, 21–25. [Google Scholar]
- He, L.R.; Xiao, L.Q.; Jian, X.X.; Zhou, W.L. Investigation on nano-aluminum thermal reactivity by TG-DSC. J. Solid Rocket Technol. 2011, 34, 628–631. [Google Scholar]
- Ke, X.; Guo, S.F.; Gou, B.W.; Wang, N.; Zhou, X.; Xiao, L.; Hao, G.Z.; Jiang, W. Superhydrophobic fluorine-containing protective coating to endow Al nanoparticles with long-term storage stability and self-activation reaction capability. Adv. Mater. Interfaces 2019, 6, 1901025. [Google Scholar] [CrossRef]
- Van Devener, B.; Perez, J.P.L.; Jankovich, J.; Anderson, S.L. Oxidefree, catalyst-coated, fuel-soluble, air-stable boron nanopowder as combined combustion catalyst and high energy density fuel. Energy Fuels 2009, 23, 6111–6120. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, C.; Yan, S.; Li, Y.; Cheng, Y. Enhanced reactivity of boron, through adding nano-aluminum and wet ball milling. Appl. Surf. Sci. 2013, 286, 91–98. [Google Scholar] [CrossRef]
- Sundaram, D.; Yang, V.; Yetter, R.A. Metal-based nanoenergetic materials: Synthesis, properties, and applications. Prog. Energy Combust. Sci. 2017, 61, 293–365. [Google Scholar] [CrossRef]
- DeLuca, L.T.; Marchesi, E.; Spreafico, M.; Reina, A.; Maggi, F.; Rossettini, L.; Bandera, A.; Colombo, G.; Kosowski, B.M. Aggregation vs. agglomeration in metallized solid rocket propellants. Int. J. Energetic Mater. Chem. Propuls. 2010, 10, 91–105. [Google Scholar] [CrossRef]
- Sun, Y.L.; Li, S.F. Combustion characteristics of coated nano aluminum in composite propellants. Def. Sci. J. 2006, 56, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Dillier, C.A.M.; Demko, A.R.; Thomas, J.C.; Grossman, K.; Seal, S.; Petersen, E.L. Performance of Aluminum-Coated Nano-Sized Boron Additives in AP/HTPB Propellants. In Proceedings of the Spring Technical Meeting of the Central States Section of The Combustion Institute, Minneapolis, MN, USA, 20–22 May 2018. [Google Scholar]
- Pang, W.Q.; Fan, X.Z.; Zhao, F.Q.; Xu, H.X.; Zhang, W.; Yu, H.J.; Li, Y.H.; Liu, F.L.; Xie, W.X.; Yan, N. Effects of different metal fuels on the characteristics of HTPB-based fuel-rich solid propellants. Propellants Explos. Pyrotech. 2013, 38, 482–486. [Google Scholar] [CrossRef]
- Zhang, W.; Xie, W.X.; Fan, X.Z.; Liu, F.L.; Pang, W.Q.; Yan, N.; Liu, Q. Effects of nano-aluminum on combusiton characteristic of low smoke NEPE propellants. J. Solid Rocket Technol. 2014, 37, 516–520. [Google Scholar]
- Yang, Z.F.; Wang, J.N.; Zhang, C.; Zheng, W.; Chen, N.; Zhang, J.; Pi, W.F. Effects of nano-materials on combustion properties of DB and CMDB propellants. Chin. J. Explos. Propellants 2013, 36, 69–72. [Google Scholar]
- Altman, I. Burn time of metal nanoparticles. Materials 2019, 12, 1368. [Google Scholar] [CrossRef] [Green Version]
- Hill, K.J.; Pantoya, M.L.; Washburn, E.; Kalman, J. Single particle combustion of pre-stressed aluminum. Materials 2019, 12, 1737. [Google Scholar] [CrossRef] [Green Version]
- Weiser, V.; Eisenreich, N.; Kelzenberg, S. Influence of the metal particle size on ignition and combustion of energetic materials. In Proceedings of the 32nd Annual conference of ICT, Karlsruhe, Germany, 3–6 July 2001. [Google Scholar]
- Yuan, Z.F.; Zhao, F.Q.; Zhang, J.Q.; Song, X.D.; Gao, H.X.; Zheng, W.; Wang, Y.; Pei, J.F.; Wang, J. Effect of nano-nickel powder on combustion properties of Al-CMDB and CL-20-CMDB propellants. Chin. J. Explos. Propellants 2016, 39, 99–103. [Google Scholar]
- Yuan, Z.F.; Yang, Y.J.; Zhao, F.Q.; Zhang, J.Q.; Song, X.D.; Gao, H.X.; Xu, S.Y. Effects of different content of nanomaterials on the combustion performance of RDX-CMDB propellants. Chin. J. Explos. Propellants 2019, 42, 566–571. [Google Scholar]
- Yuan, Z.F.; Li, J.Q.; Shu, H.M.; Zhang, J.Q.; Song, X.D.; Gao, H.X.; Zhao, F.Q. Effect of nano-Ni on overall properties of Al-CMDB and RDX/Al-CMDB propellants. Chin. J. Energetic Mater. 2019, 27, 729–734. [Google Scholar]
- Jiang, Z.; Li, S.F.; Zhao, F.Q.; Liu, Z.R.; Yin, C.M.; Luo, Y.; Li, S.W. Effect of nano aluminum and nickel powders on the combustion properties of composite propellant. J. Propuls. Technol. 2004, 25, 368–372. [Google Scholar]
- Zohari, N.; Keshavarz, M.H.; Seyedsadjadi, S.A. The advantages and shortcomings of using nano-sized energetic materials. Cent. Eur. J. Energ. Mater. 2013, 10, 135–147. [Google Scholar]
- Gany, A. Micro- and nano- scale phenomena of aluminum agglomeration during solid propellant combustion. Eurasian Chem. Technol. J. 2016, 18, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Pang, W.Q.; Fan, X.Z.; Zhao, F.Q.; Zhang, W.; Xu, H.X.; Yu, H.J.; Xie, W.X.; Yan, N.; Liu, F.L. Effects of different nano-metric particles on the properties of composite solid propellants. Propellants Explos. Pyrotech. 2014, 39, 329–336. [Google Scholar] [CrossRef]
- Duan, H.Z. Preparation of Nano iron Series Metal Powders and Composite Powders and Their Catalytic Properties for Propellants. Ph.D. Thesis, Nanjing University of Technology, Nanjing, China, June 2008. [Google Scholar]
- DeLuca, L.T.; Galfetti, L.; Maggi, F.; Colombo, G.; Paravan, C.; Reina, A.; Dossi, S.; Fassina, M.; Sossi, A. Characterization and Combustion of Aluminum Nanopowders in Energetic Systems. In Metal Nanopowders: Production, Characterization, and Energetic Applications; Gromov, A., Teipel, U., Eds.; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- DeLuca, L.T. Overview of Al-based nanoenergetic ingredients for solid rocket. Def. Technol. 2018, 14, 357–365. [Google Scholar] [CrossRef]
- Pang, W.Q.; Zhao, F.Q.; DeLuca, L.T.; Kappenstein, C.; Xu, H.X.; Fan, X.Z. Effects of nanosized Al on the combustion performance of fuel rich solid rocket propellants. Eurasian Chem. Technol. J. 2016, 18, 197–206. [Google Scholar] [CrossRef]
- DeLuca, L.T. Nanoaluminum for solid rocket propulsion: Illusions and reality. In Proceedings of the 12th International Symposium on Special Topics in Chemical Propulsion and Energetic Materials (12-ISICP), Santander, Spain, 22–25 March 2021. [Google Scholar]
Samples | Methyl Violet, Change Color Time/Min | Vieri, Change Color Time/h | 5 h Explode or Burn | 5 s Outbreak Temperature/°C | Impact Sensitivity—H50/cm |
---|---|---|---|---|---|
RDX/nNi/others = 0/0/5.75 | 68 | 68.0 | not | 268.4 | 10.6 |
RDX/nNi/others = 0/0.7/5.05 | 69 | 68.5 | not | 258.0 | 13.7 |
RDX/nNi/others = 10/0.7/3.55 | 70 | 68.0 | not | 258.0 | 11.0 |
Samples | Friction sensitivity/% | Heat of explosion/J g−1 | Specific volume/L kg−1 | Density/g cm−3 | |
RDX/nNi/others = 0/0/5.75 | 85 | 4978 | 624 | 1.701 | |
RDX/nNi/others = 0/0.7/5.05 | 81 | 4963 | 626 | 1.701 | |
RDX/nNi/others = 10/0.7/3.55 | 72 | 4955 | 638 | 1.695 |
Types of Metals | Advantages and Disadvantages | Refs. | |
---|---|---|---|
Carbon coating | nAl@C | A core–shell structure of nanoparticles was obtained. | [26,27] |
Metals coating | nAl@B | The dispersion feature was improved, the onset oxygen temperature and the heat of combustion of Al were increased. | [28,29] |
nAl@Ni | The stability is good. The active Al content changes little after storage for one month in air. The burning rate of solid propellants increased. | [31,32] | |
Metal oxide coating | nAl@Al2O3 | The agglomeration of particles reduced; the burning rate of solid propellants increases. The heat release behavior of nAl hindered, and the oxidation exothermic temperature increased. The active Al content reduced. | [34] |
nAl@CuO | with high reactivity and quick reactive speed. | [35,36,37,38] | |
Organic acid coating | nAl@OA | The exothermic peak temperature moved forward, the stability towards oxidation in air and in water increased. | [40,41,42] |
nAl@SA | The combustion performance is more complete, the stability towards oxidation in air and in water increased. | [43] | |
nAl@PA | The active Al content decreased | [21,46] | |
nAl@FS | The dispersity was improved, and the particle size distribution was more homogeneous. The ignition delay time is shorter, and the combustion reaction is more intense, the flame brightness is higher. | [47] | |
Polymer coating | nAl@GAP | The core–shell particles are observed, while the decomposition temperature increases. | [49,50] |
nAl@HTPB | The active Al content is less than 50%. | [51] | |
nAl@NC | The stability to oxidation in air during the storage period increased, the reactivity by heating is high. | [52] | |
Energetic materials coating | nAl@RDX | The performance of Al in propellants improved; the activation energy reduced. The active Al content is up to 89%. | [53] |
Fluoride coating | nAl@F | The active Al content is up to 85.85%, the combustion of nAl was promoted, and the heat of combustion is high. The regression rate of the fuel promoted. | [54,55,56] |
nAl@PF | A core–shell structure was observed. The energy amount and energy release rate is higher than that of nAl. | [58] | |
nAl@Viton B | A core–shell structure was observed. The protective effect, the energy amount and energy release rate is higher than that of nAl. | [58] | |
nAl@shellac | The energy amount and energy release rate are higher than that of nAl. | [58] | |
Other materials coating | nAl@AP | The ignition temperature is lower than that of nAl. | [59,60] |
nAl@DOS | The active Al content is low. | [61] | |
nAl@PDA | The crystal form of Al remains unchanged before and after coating. | [62] | |
nAl@NDZ | The active Al content and heat of explosive decreased. The burning rate of propellant increased, while the pressure exponent decreased. | [63] | |
nAl@NGTC | The active Al content and heat of explosive decreased. The burning rate of propellant increased, while the pressure exponent decreased. | [63] | |
nNi | Addition of nNi to the propellant increases the burning rate and reduce the pressure exponent. Addition of nNi can slightly increase the mechanical sensitivity of propellant. The detonation heat, the heat of explosion and density of CMDB propellant decreased, while the specific volume increased. | [90,91,92] | |
nTi | The heat of explosion of propellant decreased, while the density increased. | [94,95,96] | |
nZr | The heat of explosion of propellant decreased, while the density increased. | [94,95,96] | |
nFe | The high temperature thermal decomposition peak temperature of AP is advanced, the propellant burning rate increases, while pressure exponent decreases. | [97] | |
nCo | Addition of nCo reduces the high-temperature decomposition peak of AP, the propellant burning rate increases, but the maximum activation energy and pressure exponent decreased. | [97] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, W.; Li, Y.; DeLuca, L.T.; Liang, D.; Qin, Z.; Liu, X.; Xu, H.; Fan, X. Effect of Metal Nanopowders on the Performance of Solid Rocket Propellants: A Review. Nanomaterials 2021, 11, 2749. https://doi.org/10.3390/nano11102749
Pang W, Li Y, DeLuca LT, Liang D, Qin Z, Liu X, Xu H, Fan X. Effect of Metal Nanopowders on the Performance of Solid Rocket Propellants: A Review. Nanomaterials. 2021; 11(10):2749. https://doi.org/10.3390/nano11102749
Chicago/Turabian StylePang, Weiqiang, Yang Li, Luigi T. DeLuca, Daolun Liang, Zhao Qin, Xiaogang Liu, Huixiang Xu, and Xuezhong Fan. 2021. "Effect of Metal Nanopowders on the Performance of Solid Rocket Propellants: A Review" Nanomaterials 11, no. 10: 2749. https://doi.org/10.3390/nano11102749
APA StylePang, W., Li, Y., DeLuca, L. T., Liang, D., Qin, Z., Liu, X., Xu, H., & Fan, X. (2021). Effect of Metal Nanopowders on the Performance of Solid Rocket Propellants: A Review. Nanomaterials, 11(10), 2749. https://doi.org/10.3390/nano11102749