Effect of Nano-Sized Energetic Materials (nEMs) on the Performance of Solid Propellants: A Review
Abstract
:1. Introduction
2. Nano-Sized Energetic Materials (nEMs)
2.1. Nano Nitramines (nRDX and nHMX)
2.2. Nano CL-20 (nCL-20)
2.3. Nano TATB (nTATB)
2.4. Nano TATO (nHATO)
2.5. Nano-Sized FOX-7 (nFOX-7)
2.6. Nano-Sized HNS (nHNS)
3. Nano-Sized Cocrystal Energetic Materials (nCEMs)
Sample | H50/cm | P/% | |
---|---|---|---|
mRDX | 21.5 | 88 | |
nRDX | 26.1 | 68 | |
mHMX | 23.2 | 74 | |
nHMX | 27.6 | 57 | |
mCl-20 | 13.4, 15.0 [67], 11.3 [70] | 92 | |
nCl-20 | 21.8 | 74 | |
mHATO | 31.6 | 64 | |
nHATO | 45.5 | 48 | |
mFOX-7 | 87.2 [56] | 216 N [56] | |
nFOX-7 | N,N-dimethylformamide (DMF) | 123.1 [56] | 325 N [56] |
N,N-dimethylacetamide (DMAC) | 109.7 [56] | 298 N [56] | |
N-methylpyrrolidone (NMP) | 138.2 [56] | 360 N [56] | |
Acetone | 97.8 [56] | 250 N [56] | |
mHNS | 19.3 [58], 52.5 [75] | 1.1 J, 46 [75] | |
nHNS | 24.7 [58] | 0.3 J | |
CL-20/HMX mixture | 20.1 [71] | - | |
nCL-20/HMX cocrystal | 32.6 [71] | - | |
TATB | >90 [74] | 22 [74] | |
nCL-20/TATB cocrystal | >90 [74] | 6 [74] | |
nHMX/HNS cosrystal | >90 [75] | 8 [75] | |
HMX/RDX blend | 35.7 [76] | 85 [76] | |
nHMX/RDX cocrystal | 45.0 [76] | 60 [76] | |
mTATB | 170 [43] | 0 [43] | |
nTATB | 125 [43] | 0 [43] | |
mADN | 3 J [67] | >360 N [67] | |
nADN | 4.5 J [67] | >360 N [67] |
4. Outlook and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pang, W.; Fan, X.; Wang, K.; Chao, Y.; Xu, H.; Qin, Z.; Zhao, F. Al-based nano-sized composite energetic materials (nano-CEMs): Preparation, characterization, and performance. Nanomaterials 2020, 10, 1039. [Google Scholar] [CrossRef] [PubMed]
- Tappan, B.C.; Brill, T.B. Thermal decomposition of energetic materials 86. cryogel synthesis of nanocrystalline CL-20 coated with cured nitrocellulose. Propellants Explos. Pyrotech. 2003, 28, 223–230. [Google Scholar] [CrossRef]
- Tan, X.R.; Duan, X.H.; Pei, C.H.; Xu, H.L. Preparation of nano-TATB by semibatch reaction crystallization. Nano 2013, 8, 550–561. [Google Scholar] [CrossRef]
- He, D.C.; Zheng, B.; Tan, Z. Preparation of HMX with nanometer particle size and narrow particle distribution. Chin. J. Energetic Mater. 2004, 12, 43–45. [Google Scholar]
- Stepanov, V.; Krasnoperov, L.N.; Elkina, I.B.; Zhang, X. Production of nanocrystalline RDX by Rapid Expansion of Supercritical Solutions. Propellants Explos. Pyrotech. 2005, 30, 178–183. [Google Scholar] [CrossRef]
- Bayat, Y.; Zarandi, M.; Zarei, M.A.; Soleyman, R.; Zeynali, V. A novel approach for preparation of CL-20 nanoparticles by microemulsion method. J. Mol. Liq. 2014, 193, 83–86. [Google Scholar] [CrossRef]
- Gao, B.; Wu, P.; Huang, B.; Wang, J.Y.; Qiao, Z.J.; Yang, G.C.; Nie, F.D. Preparation and characterization of nano-1,1-diamino-2,2-dinitroethene (FOX-7) explosive. New J. Chem. 2014, 38, 2334–2341. [Google Scholar] [CrossRef]
- Huang, B.; Qiao, Z.Q.; Nie, F.D.; Cao, M.H.; Su, J.; Huang, H.; Hu, C.W. Fabrication of FOX-7 quasi-three-dimensional grids of one-dimensional nanostructures via a spray freeze-drying technique and size-dependence of thermal properties. J. Hazard. Mater. 2010, 184, 561–566. [Google Scholar] [CrossRef]
- Wang, D.J. Preparation of nanometer NTO by W/O microemulsion. Initiat. Pyrotech. 2007, 1, 10–14. [Google Scholar]
- Frolov, Y.; Pivkina, A.; Ulyanova, P.; Zavyalov, S. Nanomaterials and nanostructures as components for high-energy condensed systems. In Proceedings of the 28th International Pyrotechnics Seminar, Adelaide, Australia, 4–9 November 2001; p. 311. [Google Scholar]
- Essel, J.T.; Cortopassi, A.C.; Kuo, K.K.; Leh, C.G.; Adair, J.H. Formation and characterization of nano-sized RDX particles produced using the RESS-AS process. Propellants Explos. Pyrotech. 2012, 37, 699–706. [Google Scholar] [CrossRef]
- Pang, W.Q.; Fan, X.Z.; Zhang, Z.P. Nano-Sized Metal Powder: Preparation, Characterization and Energetic Application; National Defense Industry Press: Beijing, China, 2016. [Google Scholar]
- Bayat, Y.; Pourmortazavi, S.M.; Iravani, H.; Ahadi, H. Statistical optimization of supercritical carbon dioxide antisolvent process for preparation of HMX nanoparticles. J. Supercrit. Fluids 2012, 72, 248–254. [Google Scholar] [CrossRef]
- Rossi, C. Nano-energetic materials for MEMS: A review. J. Microelectromechanical Syst. 2007, 16, 919–931. [Google Scholar] [CrossRef] [Green Version]
- Kumari, A.; Mehilal, J.S.; Jain, S.; Jain, M.K.; Bhattacharya, B. Nano-ammonium perchlorate: Preparation, characterization and evaluation in composite propellant formulation. J. Energetic Mater. 2013, 31, 192–202. [Google Scholar] [CrossRef]
- Fatholiahi, M.; Mohammadi, B.; Mohammadi, J. Kinetic investigation on thermal decomposition of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) nanoparticles. Fuel 2013, 104, 95–100. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, W.; Zeng, J.B.; Yang, Q.; Wang, Y.J. The effect of drying on the particle size and sensitivities of nanohexahydro-1,3,5-trinitro-1,3,5-triazine. Def. Technol. 2013, 21, 1–9. [Google Scholar]
- Liu, J.; Jiang, W.; Li, F.S.; Wang, L.X.; Zeng, J.B.; Li, Q.; Wang, Y.; Yang, Q. Effect of drying conditions on the particle size, dispersion state, and mechanical sensitivities of nano HMX. Propellants Explos. Pyrotech. 2014, 39, 30–39. [Google Scholar] [CrossRef]
- Liu, J.; Li, Q.; Zeng, J.B.; Wang, L.X.; Yang, Q.; Jiang, W.; Li, F.S. Mechanical pulverization for the production of sensitivity reduced nano-RDX. Explos. Mater. 2013, 42, 1–5. [Google Scholar]
- Risse, B.; Schnell, F.; Spitzer, D. Synthesis and desensitization of nano-β-HMX. Propellants Explos. Pyrotech. 2014, 39, 397–401. [Google Scholar] [CrossRef]
- Zeng, J.B.; Liu, J.; Wang, L.X.; Liu, Q.E.; Li, Q.; Wang, Y.; Jiang, W.; Li, F.S. Preparation, thermal performance analysis and sensitivities study of nano HMX. Explos. Mater. 2014, 43, 8–12. [Google Scholar]
- Qiao, Y.; Liu, J.; Xiao, L.; Hao, G.Z.; Gao, H.; Zeng, J.B.; Jiang, W. Study on thermal decomposition characteristics and sensitivities of nano-RDX based PBX. Explos. Mater. 2016, 45, 17–21. [Google Scholar]
- An, C.W.; Li, F.S.; Wang, J.Y.; Guo, X.D. Surface coating of nitromine explosives and its effects on the performance of composite modified double base propellants. J. Propuls. Power 2012, 28, 444–448. [Google Scholar]
- Divekar, C.N.; Sanghavi, R.R.; Nair, U.R.; Chakraborthy, T.K.; Sikder, A.K.; Singh, A. Closed vessel and thermal studies on triple base gun propellants containing CL-20. J. Propuls. Power 2010, 26, 120–124. [Google Scholar] [CrossRef]
- Yan, Q.L.; Zeman, S.E.A.; Elveih, A. Recent advances in thermal analysis and stability evaluation of insensitive plastic bonded explosives (PBXs). Thermochim. Acta 2012, 537, 1–12. [Google Scholar] [CrossRef]
- Song, X.L.; Wang, Y.; An, C.W.; Guo, X.D.; Li, F.S. Dependence of particle morphology and size on the mechanical sensitivity and thermal stability of octahydro-1,3,5,7-tetrazocine. J. Hazard. Mater. 2008, 159, 222–229. [Google Scholar] [PubMed]
- Siviour, C.R.; Gifford, M.J.; Walley, S.M.; Proud, W.G.; Field, J.E. Particle size effects on the mechanical properties of a polymer bonded explosive. J. Mater. Sci. 2004, 39, 1255–1258. [Google Scholar] [CrossRef]
- Liu, J. Controlled Preparation of Lower Sensitivity Characterized Nanometer Nitramine Explosives and Their Applying Basic Research; Nanjing University of Science & Technology: Nanjing, China, 2015. [Google Scholar]
- Gao, H.; Liu, J.; Hao, G.Z.; Xiao, L.; Qiao, Y.; Jiang, W.; Li, F.S. Study on preparation, characterization and comminution mechanisml of nano-sized CL-20. Chin. J. Explos. Propellants 2015, 38, 46–49. [Google Scholar]
- Guo, X.D.; OuYang, G.; Liu, J.; Li, Q.; Wang, L.X.; Gu, Z.M.; Li, F.S. Massive preparation of reduced-sensitivity nano CL-20 and its characterization. J. Energetic Mater. 2015, 33, 24–33. [Google Scholar]
- Shang, F.F.; Zhang, J.L.; Zhang, X.L.; Wang, J.Y. Preparation and characterization of nano-CL-20 with solution enhanced dispersion by supercritical fluids. Chin. J. Explos. Propellants 2012, 35, 37–40. [Google Scholar]
- Ning, K.; Zhang, Z.; Xiao, L.; Guo, S.F.; Gou, B.W.; Yang, C.Y.; Hu, Y.B.; Hao, G.Z.; Jiang, W. Effects of particle gradation of micro-nano CL-20 on the properties of eutectic DNAN/TNT-based castable explosives. Chin. J. Energetic Mater. 2019, 27, 915–922. [Google Scholar]
- Yao, Y.L.; Wu, L.Z.; Tang, Y.; Cheng, B.; Shen, R.Q.; Ye, Y.H.; Hu, Y.; Zhu, P. Direct writing rule of nano CL-20 explosive energetic ink. Chin. J. Explos. Propellants 2016, 39, 39–42. [Google Scholar]
- Berlziger, T.M. Method of Making Fine-Grained Triaminotrinitrobenzene. U.S. Patent 4481371, 6 November 1984. [Google Scholar]
- Kennedy, J.E.; Lee, K.Y.; Spontarelli, T.; Stine, J.R. Detonation spreading in fine TATBs. In Proceedings of the 24th International Pyrotechnics Seminar, Monterey, CA, USA, 27–31 July 1998. [Google Scholar]
- Zeng, G.Y.; Nie, F.D.; Zhang, Q.R.; Pang, W.T.; Chen, Y.; Li, C.Z. The influence of preparation method on the particle structure of ultrafine TATB. Chin. J. Explos. Propellants 2001, 24, 12–14. [Google Scholar]
- Yang, G.C.; Nie, F.D.; Huang, H.; Zhao, L.; Pang, W.T. Preparation and characterization of nano-TATB explosive. Propellants Explos. Pyrotech. 2006, 31, 390–394. [Google Scholar] [CrossRef]
- Song, X.L.; Wang, Y.; Liu, L.X.; An, C.W.; Wang, J.Y.; Zhang, J.L. Characterization of nano TATB fabricated by mechanical milling methodology. J. Solid Rocket Technol. 2017, 40, 471–475. [Google Scholar]
- Wu, Y.Y.; Li, Y.L.; Wang, J.Y.; Hou, C.H.; An, C.W. Preparation and characterization of nano-TATB. Initiat. Pyrotech. 2013, 2, 44–46. [Google Scholar]
- Wang, Y.Q.; Wang, J.; Yang, G.C. Preparation of nano-TATB from CF3SO3H/H2O by spraying crystallization. Chin. J. Energetic Mater. 2016, 24, 969–972. [Google Scholar]
- Yu, W.F.; Liao, L.Y.; Chen, Y.; Yang, G.C.; Li, J.S. Microstructure and fractal characteristics of superfine TATB and HNS. Chin. J. Energetic Mater. 2015, 23, 1198–1201. [Google Scholar]
- Li, P.; Aodeng, G.W.; Li, C.Z.; Duan, X.H.; Pei, C.H. Construction and thermal decomposition kinetics of the keel-like nanostructure TATB. Chin. J. Energetic Mater. 2019, 27, 137–143. [Google Scholar]
- Zeng, G.Y.; Liu, C.; Zhao, L.; Qin, D.X. Preparation of micro-nano TATB by high-pressure and ultrasonic breaking method. Chin. J. Energetic Mater. 2015, 23, 746–750. [Google Scholar]
- Xu, Y.; Xu, W.J.; Wang, J.Y.; Jing, X.F.; Meng, F.W. Preparation of nano-TATB by environment-friendly method. Initiat. Pyrotech. 2015, 1, 26–29. [Google Scholar]
- Olles, J.; Wixom, R.; Knepper, R.; Yarrington, C.; Patel, R.; Stepanov, V. Comparison of detonation spreading in pressed ultra-fine and nano-TATB. In Proceedings of the APS Topical Conference on the Shock Compression of Matter 2017, Louis, MO, USA, 9–14 July 2017. [Google Scholar]
- Chen, Y.; Xin, F.; Qiao, Z.Q. Investigation on the BET of nano TATB during stockpile. In Proceeding of the Symposium of Energetic Materials for Chongqing (Sichuan Province) Ordance Society, Chengdu, China, 23–25 July 2011; pp. 1–3. [Google Scholar]
- Gong, Z.; Tu, X.Z.; Zeng, G.Y.; Bai, L.F.; Cao, K. Aging mechanism of nano TATB explosive during storage. Chin. J. Energetic Mater. 2021, 29, 234–240. [Google Scholar]
- Li, B.; Liu, Q.E.; Gao, X.D.; Xiao, L.; Hao, G.Z.; Ke, X.; Zhang, Z.; Li, D.N.; Jiang, W. Preparation of nano-HATO by mechanical milling method and its performance test. Chin. J. Explos. Propellants 2019, 42, 97–102. [Google Scholar]
- Li, B. Preparation Technology and Application of HATO Nanoparticles; Nanjing University of Science & Technology: Nanjing, China, 2018. [Google Scholar]
- Shang, Y.P. Preparation and Properties of Micro- and Nano-TKX-50; North University of China: Taiyuan, China, 2020. [Google Scholar]
- Pang, W.Q.; DeLuca, L.T.; Gromov, A.; Cumming, A. Innovative Energetic Materials: Properties, Combustion Performance and Application; Springer: Singapore, 2020. [Google Scholar]
- Hudson, R.J.; Zioupos, P.; Gill, P.P. Investigating the mechanical properties of RDX crystals using nano-indentation. Propellants Explos. Pyrotech. 2012, 37, 191–197. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, W.; Li, F.S.; Wang, Y.; Zhou, S.; Bao, K.W. Preparation and study of nano octahydro-1,3,5,7- tetranitro-1,3,5,7-tetrazocine. Acta Armamentarii 2013, 34, 74–180. [Google Scholar]
- Qi, D.L.; Luo, Q.P.; Cui, P.T.; Li, Z.Q.; Duan, X.H.; Pei, C.H. Preparation of nano-FOX-7 by solvent-non-solvent method and its properties. Chin. J. Energetic Mater. 2019, 27, 53–59. [Google Scholar]
- Qi, D.L. Preparation of Nano-FOX-7 by Solvent-non-Solvent Method and Catalytic Effect of Nano-CoO on FOX-7; Southwest University of Science and Technology: Mianyang, China, 2019. [Google Scholar]
- Yue, X.X.; Luo, Q.P.; Cui, P.T.; Li, Z.Q.; Duan, X.H.; Yin, T. Preparation of nano-sized FOX-7 by ultra-low-temperature recrystallization and its properties. Chin. J. Explos. Propellants 2021, 44, 147–153. [Google Scholar]
- Yue, X.X. Preparation of Nano-FOX-7 by Ultra-Low Temperature Recrystallization Method; Southwest University of Science and Technology: Mianyang, China, 2019. [Google Scholar]
- Wang, J.Y.; Huang, H.; Wang, P.Y.; Chen, J.; Liu, H.N. Preparation and characterization of high purity nano HNS. Chin. J. Energetic Mater. 2008, 16, 258–261. [Google Scholar]
- Song, X.L.; Yang, Y.; Liu, L.X.; An, C.W.; Wang, J.Y.; Zhang, J.L. Thermal decomposition performance of nano HNS fabricate by mechanical milling method. Chin. J. Energetic Mater. 2016, 24, 1188–1192. [Google Scholar]
- Tang, C.; Huang, B.; Liu, L.; Fan, M.K.; Zhou, Y. Cytotoxicity and mechanisms of nano-scale HNS, TATB and LLM-105 to RAW264.7 macrophage. Chin. J. Energetic Mater. 2008, 16, 258–261. [Google Scholar]
- Che, W.J.; Zhang, Z.Z.; Wu, M.; Ran, Y.; Zhang, H.; Zeng, X.G. Studies on acute toxicity and multagenicity of nanometer TATB. Chin. J. Ind Med 2005, 18, 143–147. [Google Scholar]
- Bunde, A.; Havlin, S. (Eds.) Fractal in Science; Springer: Berlin, Germany, 1994; pp. 1–26. [Google Scholar]
- Bhattacharya, S.; Agarwal, A.K.; Rajagopalan, T.; Patel, V.K. Nano-Energetic Materials; Springer: Singapore, 2019. [Google Scholar]
- Pessina, F.; Schnell, F.; Spitzer, D. Tunable continuous production of RDX from microns to nanoscale using polymeric additives. Chem. Eng. J. 2016, 291, 12–19. [Google Scholar] [CrossRef]
- Pang, W.; De Luca, L.T. Nano and Micro-Scale Energetic Materials: Propellants and Explosives; Wiley: Weinheim, Germany, 2022. [Google Scholar]
- Spitzer, D.; Risse, B.; Schnell, F.; Pichot, V.; Klaumunzer, M.; Schaefer, M.R. Continuous engineering of nano-cocrystals for medical and energetic applications. Sci. Rep. 2014, 4, 6575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berthe, J.E.; Schnell, F.; Boehrer, Y.; Spitzer, D. Nanocrystallisation of Ammonium DiNitramide (ADN) by Spray Flash Evaporation (SFE). Propellants Explos. Pyrotech. 2018, 43, 609–615. [Google Scholar] [CrossRef]
- Pang, W.Q.; Wang, K.; Zhang, W.; DeLuca, L.T.; Fan, X.Z.; Li, J.Q. CL-20-based cocrystal energetic materials simulation, preparation and performance. Molecules 2020, 25, 4311. [Google Scholar] [CrossRef] [PubMed]
- Bolton, O.; Simke, L.R.; Pagoria, P.F.; Matzger, A.J. High power explosive with good sensitivity: A 2:1 cocrystal of CL-20: HMX. Cryst. Growth Des. 2012, 12, 4311–4314. [Google Scholar] [CrossRef]
- Lin, H.; Zhu, S.G.; Zhang, L.; Peng, X.H.; Li, H.Z. Synthesis and first principles investigation of HMX/NMP cocrystal explosive. J. Energetic Mater. 2013, 31, 261–272. [Google Scholar] [CrossRef]
- Zhao, S.S.; Song, X.L.; Wang, Y.; Liu, S.; Zhang, J.; Zhang, S.M.; Feng, K. Characterization of nano-CL-20/HMX cocrystal prepared by mechanical milling method. J. Solid Rocket Technol. 2018, 41, 479–482. [Google Scholar]
- Song, C.K.; An, C.W.; Li, H.Q.; Wang, J.Y. Preparation and performance of micro/nano CL-20/HMX energetic cocrystal materials. Initiat. Pyrotech. 2018, 1, 36–40. [Google Scholar]
- Hübner, J.; Deckert-Gaudig, T.; Glorian, J.; Deckert, V.; Spitzer, D. Surface characterization of nanoscale co-crystals enabled through tip enhanced Raman spectroscopy. Nanoscale 2020, 12, 10306. [Google Scholar] [CrossRef]
- Song, X.L.; Wang, Y.; Zhao, S.S.; Li, F.S. Nanometer CL-20/TATB co-crystal fabricated by mechanical milling methodology. J. Ordnance Equip. Eng. 2018, 39, 146–151. [Google Scholar]
- Wang, Y.; Song, X.L.; Zhao, S.S.; Li, F.S. Preparation of nano HMX/HNS co-mixed crystal explosive by mechanical ball milling method. Chin. J. Explos. Propellants 2018, 41, 261–266. [Google Scholar]
- Song, X.L.; Wang, Y.; Huang, H.Y.; Liu, C.L.; Zhao, S.S. Preparation and performance of nanometer HMX/RDX mechanical co-crystal. J. Acad. Armored Force Eng. 2018, 32, 59–63. [Google Scholar]
- Li, H.Q. Design, Preparation and Performance of Micro/Nano Energetic Cocrystal Materials; North University of China: Taiyuan, China, 2017. [Google Scholar]
- Guo, H.; Du, P.; Ke, X.; Liu, J.; Hao, G.Z.; Cheng, T.; Jiang, W. A novel method to prepare nano-sized CL-20/NQ co-crystal: Vacuum freeze drying. Propellants Explos. Pyrotech. 2017, 42, 889–895. [Google Scholar] [CrossRef]
- Spitzer, D.; Comet, M.; Baras, C.; Pichot, V.; Piazzon, N. Energetic nano-materials: Opportunities for enhanced performances. J. Phys. Chem. Solids 2010, 71, 100–108. [Google Scholar] [CrossRef]
Sample | Tp/°C | Ea/kJ·mol−1 | To/°C | Tb/°C | ||
---|---|---|---|---|---|---|
Kissinger | Starink | Ozawa | ||||
mHATO | 246.78 | 117.88 | 117.92 | 120.26 | 205.95 | 209.01 |
nHATO | 244.32 | 115.89 | 118.33 | 115.79 | 208.76 | 211.96 |
Types of nEMs | Advantages and Disadvantages | Refs. | |
---|---|---|---|
Nano-sized energetic materials | nRDX | The decomposition exothermic peak of the nano RDX is advanced, and the activation energy is reduced. | [17,18] |
nHMX | The impact sensitivity and shock wave sensitivity decreased. | [21] | |
nCl-20 | The friction, impact, and shock sensitivities of nCL-20 decreased. The phase transformation temperatures postponed, the thermal decomposition peak temperature advanced, and the impact sensitivity significantly reduced. | [29,30,31] | |
nTATB | The activation energy of TATB decreased, the 5 s explosion point increased. The activation energy is lower than that of mTATB. | [38,44] | |
nHATO | The maximum thermal mass loss temperature is reduced, the apparent activation energy decreased, the self-ignition temperature increased. | [48] | |
nFOX-7 | The initial thermal decomposition temperatures increased, the apparent activation energy of nFOX-7 calculated by the Kissinger method decreased. | [54,57] | |
nHNS | nHNS is less sensitive to impact, but more sensitive to short impulse shock waves than that of mHNS. The apparent activation energy of thermal decomposition of nHNS is higher than that of mHNS. | [58,59] | |
Nano-sized energetic cocrystals | nCL-20/HMX cocrystal | The mechanical sensitivity of the nCL-20/HMX cocrystal is reduced obviously compared to that of raw HMX, whereas the energy output property is equivalent to that of raw CL-20. | [72] |
nCL-20/TATB cocrystal | The activation energy and rate constant of CL-20/TATB cocrystal thermal decomposition were higher than that of raw materials. | [74] | |
nHMX/HNS cosrystal | The activation energy of nHMX/HNS thermal decomposition is higher than that of raw materials. The mechanical sensitivity is lower than that of HMX and HNS. | [75,76] | |
nHMX/RDX cocrystal | The impact sensitivity and friction sensitivity of nHMX/RDX cocrystal are lower than those of raw HMX, raw RDX, and HMX/RDX blends. However, the thermal sensitivity of nHMX/RDX is higher than the raw materials. | [77] | |
nCL-20/NQ cocrystal | The mechanical sensitivity test indicated the sensitivity was effectively reduced compared to neat CL-20. | [78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, W.; Deng, C.; Li, H.; DeLuca, L.T.; Ouyang, D.; Xu, H.; Fan, X. Effect of Nano-Sized Energetic Materials (nEMs) on the Performance of Solid Propellants: A Review. Nanomaterials 2022, 12, 133. https://doi.org/10.3390/nano12010133
Pang W, Deng C, Li H, DeLuca LT, Ouyang D, Xu H, Fan X. Effect of Nano-Sized Energetic Materials (nEMs) on the Performance of Solid Propellants: A Review. Nanomaterials. 2022; 12(1):133. https://doi.org/10.3390/nano12010133
Chicago/Turabian StylePang, Weiqiang, Chongqing Deng, Huan Li, Luigi T. DeLuca, Dihua Ouyang, Huixiang Xu, and Xuezhong Fan. 2022. "Effect of Nano-Sized Energetic Materials (nEMs) on the Performance of Solid Propellants: A Review" Nanomaterials 12, no. 1: 133. https://doi.org/10.3390/nano12010133
APA StylePang, W., Deng, C., Li, H., DeLuca, L. T., Ouyang, D., Xu, H., & Fan, X. (2022). Effect of Nano-Sized Energetic Materials (nEMs) on the Performance of Solid Propellants: A Review. Nanomaterials, 12(1), 133. https://doi.org/10.3390/nano12010133