Microstructure and Fracture Mechanism Investigation of Porous Silicon Nitride–Zirconia–Graphene Composite Using Multi-Scale and In-Situ Microscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Silicon Nitride–Zirconia–Graphene Composite Preparation
2.2. Multi-Scale and In-Situ Microscopy
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hampshire, S. Silicon nitride ceramics—Review of structure, processing and properties. J. Achiev. Mater. Manuf. Eng. 2007, 24, 43–50. [Google Scholar]
- Riley, F.L. Silicon nitride and related materials. J. Am. Ceram. Soc. 2000, 83, 245–265. [Google Scholar] [CrossRef]
- Ziegler, G.; Heinrich, J.; Wötting, G. Relationships between processing, microstructure and properties of dense and reaction-bonded silicon nitride. J. Mater. Sci. 1987, 22, 3041–3086. [Google Scholar] [CrossRef]
- Cygan, T.; Wozniak, J.; Kostecki, M.; Adamczyk-Cieslak, B.; Olszyna, A. Influence of graphene addition and sintering temperature on physical properties of Si3N4 matrix composites. Int. J. Refract. Met. H. 2016, 57, 19–23. [Google Scholar] [CrossRef]
- Klemm, H. Silicon nitride for high-temperature applications. J. Am. Ceram. Soc. 2010, 93, 1501–1522. [Google Scholar] [CrossRef]
- Ariff, T.F.; Shafie, N.S.; Zahir, Z.M. Wear analysis of silicon nitride cutting tool in dry machining of T6061 aluminium alloy. Appl. Mech. Mater. 2012, 268–270, 563–567. [Google Scholar] [CrossRef]
- Rutkowski, P.; Stobierski, L.; Zientara, D.; Jaworska, L.; Klimczyk, P.; Urbanik, M. The influence of the graphene additive on mechanical properties and wear of hot-pressed Si3N4 matrix composites. J. Eur. Ceram. Soc. 2015, 35, 87–94. [Google Scholar] [CrossRef]
- Rauta, P.R.; Manivasakan, P.; Rajendran, V.; Sahu, B.B.; Panda, B.K.; Mohapatra, P. Phase transformation of ZrO2 nanoparticles produced from zircon. Phase Transit. 2012, 85, 13–26. [Google Scholar] [CrossRef]
- Chevalier, J.; Gremillard, L.; Virkar, A.V.; Clarke, D.R. The Tetragonal-Monoclinic Transformation in Zirconia: Lessons Learned and Future Trends. J. Am. Ceram. Soc. 2009, 92, 1901–1920. [Google Scholar] [CrossRef]
- Sayyadi-Shahraki, A.; Rafiaei, S.M.; Ghadami, S.; Nekouee, K.A. Densification and mechanical properties of spark plasma sintered Si3N4/ZrO2 nano-composites. J. Alloys Compd. 2019, 776, 798–806. [Google Scholar] [CrossRef]
- Balázsi, C.; Shen, Z.; Kónya, Z.; Kasztovszky, Z.; Wéber, F.; Vértesy, Z.; Biró, L.P.; Kiricsi, I.; Arató, P. Processing of carbon nanotube reinforced silicon nitride composites by spark plasma sintering. Compos. Sci. Technol. 2005, 65, 727–733. [Google Scholar] [CrossRef]
- Ramírez, C.; Vega-Diaz, S.M.; Morelos-Gómez, A.; Figueiredo, F.M.; Terrones, M.; Osendi, M.I.; Belmonte, M.; Miranzo, P. Synthesis of conducting graphene/Si3N4 composites by spark plasma sintering. Carbon 2013, 57, 425–432. [Google Scholar] [CrossRef]
- Balázsi, K.; Furkó, M.; Fogarassy, Z.; Balázsi, C. Examination of milled h-BN addition on sintered Si3N4/h-BN ceramic composites. Process. Appl. Ceram. 2018, 12, 357–365. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Kvetkova, L.; Duszova, A.; Kasiarova, M.; Dorcakova, F.; Dusza, J.; Balazsi, C. Influence of processing on fracture toughness of Si3N4+ graphene platelet composites. J. Eur. Ceram. Soc. 2013, 33, 2299–2304. [Google Scholar] [CrossRef]
- Ramirez, C.; Miranzo, P.; Belmonte, M.; Osendi, M.I.; Poza, P.; Vega-Diaz, S.M.; Terrones, M. Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets. J. Eur. Ceram. Soc. 2014, 34, 161–169. [Google Scholar] [CrossRef]
- Dusza, J.; Morgiel, J.; Duszova, A.; Kvetkova, L.; Nosko, M.; Kun, P.; Balazsi, C. Microstructure and fracture toughness of Si3N4+ graphene platelet composites. J. Eur. Ceram. Soc. 2012, 32, 3389–3397. [Google Scholar] [CrossRef]
- Kvetkova, L.; Duszova, A.; Hvizdos, P.; Dusza, J.; Kun, P.; Balazsi, C. Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites. Scripta Mater. 2012, 66, 793–796. [Google Scholar] [CrossRef]
- Seiner, H.; Ramirez, C.; Koller, M.; Sedlak, P.; Landa, M.; Miranzo, P.; Belmonte, M.; Osendi, M.I. Elastic properties of silicon nitride ceramics reinforced with graphene nanofillers. Mater. Des. 2015, 87, 675–680. [Google Scholar] [CrossRef]
- Hvizdos, P.; Dusza, J.; Balazsi, C. Tribological properties of Si3N4-graphene nanocomposites. J. Eur. Ceram. Soc. 2013, 33, 2359–2364. [Google Scholar] [CrossRef]
- Balko, J.; Hvizdos, P.; Dusza, J.; Balazsi, C.; Gamcova, J. Wear damage of Si3N4-graphene nanocomposites at room and elevated temperatures. J. Eur. Ceram. Soc. 2014, 34, 3309–3317. [Google Scholar] [CrossRef]
- Rutkowski, P.; Stobierski, L.; Gorny, G. Thermal stability and conductivity of hot-pressed Si3N4-graphene composites. J. Therm. Anal. Calorim. 2014, 116, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Balazsi, K.; Furko, M.; Liao, Z.; Gluch, J.; Medved, D.; Sedlak, R.; Dusza, J.; Zschech, E.; Balazsi, C. Porous sandwich ceramic of layered silicon nitride-zirconia composite with various multilayered graphene content. J. Alloys Compd. 2020, 832, 154984. [Google Scholar] [CrossRef]
- Balazsi, K.; Furko, M.; Liao, Z.; Fogarassy, Z.; Medved, D.; Zschech, E.; Dusza, J.; Balazsi, C. Graphene added multilayer ceramic sandwich (GMCS) composites: Structure, preparation and properties. J. Eur. Ceram. Soc. 2020, 40, 4792–4798. [Google Scholar] [CrossRef]
- Cheng, C.; Fan, R.; Wang, Z.; Shao, Q.; Guo, X.; Xie, P.; Yin, Y.; Zhang, Y.; An, L.; Lei, Y.; et al. Tunable and weakly negative permittivity in carbon/silicon nitride composites with different carbonizing temperatures. Carbon 2017, 125, 103–112. [Google Scholar] [CrossRef]
- Yang, X.; Li, B.; Zhang, C.; Wang, S.; Liu, K.; Zou, C. Fabrication and properties of porous silicon nitride wave-transparent ceramics via gel-casting and pressureless sintering. Mater. Sci. Eng. A 2016, 663, 174–180. [Google Scholar] [CrossRef]
- Latella, B.; O’connor, B.; Padture, N.; Lawn, B. Hertzian contact damage in porous alumina ceramics. J. Am. Ceram. Soc. 1997, 80, 1027–1031. [Google Scholar] [CrossRef]
- She, J.; Yang, J.; Beppu, Y.; Ohji, T. Hertzian contact damage in a highly porous silicon nitride ceramic. J. Eur. Ceram. Soc. 2003, 23, 1193–1197. [Google Scholar] [CrossRef]
- Staub, D.; Meille, S.; Le Corre, V.; Rouleau, L.; Chevalier, J. Identification of a damage criterion of a highly porous alumina ceramic. Acta Mater. 2016, 107, 261–272. [Google Scholar] [CrossRef]
- Li, D.; Yang, X.; Gao, S.; Zheng, Y. Fabrication and properties of in situ silicon nitride nanowires reinforced porous silicon nitride (SNNWs/SN) compsites. J. Eur. Ceram. Soc. 2018, 38, 2671–2675. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, F. Effect of agarose content on microstructures and mechanical properties of porous silicon nitride ceramics produced by gelcasting. J. Zhejiang Univ. Sci. A (Appl. Phys. Eng.) 2010, 11, 771–775. [Google Scholar] [CrossRef]
- Rabinskiy, L.; Ripetsky, A.; Stitnikov, S.; Solyaev, Y.; Kahramanov, R. Fabrication of porous silicon nitride ceramics using binder jetting technology. IOP Conf. Ser. Mater. Sci. Eng. 2016, 140, 012023. [Google Scholar] [CrossRef]
- Balazsi, C. Silicon nitride composites with different nanocarbon additives. J. Korean Ceram. Soc. 2012, 49, 352–362. [Google Scholar] [CrossRef] [Green Version]
- Agulleiro, J.I.; Fernandez, J.J. Fast tomographic reconstruction on multicore computers. Bioinformatics 2011, 27, 582–583. [Google Scholar] [CrossRef]
- Levin, B.D.A.; Jiang, Y.; Padgett, E.; Waldon, S.; Quammen, C.; Harris, C.; Ayachit, U.; Hanwell, M.; Ercius, P.; Muller, D.A.; et al. Tutorial on the Visualization of Volumetric Data Using tomviz. Micros. Today 2018, 26, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Awoyera, P.O.; Akinmusuru, J.O.; Dawson, A.R.; Ndambuki, J.M.; Thom, N.H. Microstructural characteristics, porosity and strength development in ceramic-laterized concrete. Cem. Concr. Compos. 2018, 86, 224–237. [Google Scholar] [CrossRef]
- Hnatko, M.; Sajgalik, P.; Lences, Z.; Salamon, D.; Monteverde, F. Carbon reduction reaction in the Y2O3-SiO2 glass system at high temperature. J. Eur. Ceram. Soc. 2001, 21, 2797–2801. [Google Scholar] [CrossRef]
- Hnatko, M.; Galusek, D.; Sajgalik, P. Low-cost preparation of Si3N4-SiC micro/nano composites by in-situ carbothermal reduction of silica in silicon nitride matrix. J. Eur. Ceram. Soc. 2004, 24, 189–195. [Google Scholar] [CrossRef]
- Sajgalik, P.; Hnatko, M.; Copan, P.; Lences, Z.; Huang, J. Influence of graphite additives on wear properties of hot pressed Si3N4 ceramics. J. Ceram. Soc. JAPAN 2006, 114, 1061–1068. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Padture, N.P.; Tanaka, H. Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites. Nat. Mater. 2004, 3, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Sun, M.; Ye, F.; Bai, Y.; Li, M.; Fan, S.; Zhang, L. Structure design, fabrication, properties of laminated ceramics: A review. Int. J. Light. Mater. Manuf. 2018, 1, 126–141. [Google Scholar] [CrossRef]
- Sun, M.; Bai, Y.; Li, M.; Fan, S.; Cheng, L. Structural design and energy absorption mechanism of laminated SiC/BN ceramics. J. Eur. Ceram. Soc. 2018, 38, 3742–3751. [Google Scholar] [CrossRef]
MLG Content | Density (g/cm3) | Porosity/Water Intrusion (%) | Porosity/Mercury Intrusion (%) |
---|---|---|---|
5 wt.% MLG | 2.71 | 28 | 33.4 |
30 wt.% MLG | 1.84 | 47 | 47.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Z.; Standke, Y.; Gluch, J.; Balázsi, K.; Pathak, O.; Höhn, S.; Herrmann, M.; Werner, S.; Dusza, J.; Balázsi, C.; et al. Microstructure and Fracture Mechanism Investigation of Porous Silicon Nitride–Zirconia–Graphene Composite Using Multi-Scale and In-Situ Microscopy. Nanomaterials 2021, 11, 285. https://doi.org/10.3390/nano11020285
Liao Z, Standke Y, Gluch J, Balázsi K, Pathak O, Höhn S, Herrmann M, Werner S, Dusza J, Balázsi C, et al. Microstructure and Fracture Mechanism Investigation of Porous Silicon Nitride–Zirconia–Graphene Composite Using Multi-Scale and In-Situ Microscopy. Nanomaterials. 2021; 11(2):285. https://doi.org/10.3390/nano11020285
Chicago/Turabian StyleLiao, Zhongquan, Yvonne Standke, Jürgen Gluch, Katalin Balázsi, Onkar Pathak, Sören Höhn, Mathias Herrmann, Stephan Werner, Ján Dusza, Csaba Balázsi, and et al. 2021. "Microstructure and Fracture Mechanism Investigation of Porous Silicon Nitride–Zirconia–Graphene Composite Using Multi-Scale and In-Situ Microscopy" Nanomaterials 11, no. 2: 285. https://doi.org/10.3390/nano11020285
APA StyleLiao, Z., Standke, Y., Gluch, J., Balázsi, K., Pathak, O., Höhn, S., Herrmann, M., Werner, S., Dusza, J., Balázsi, C., & Zschech, E. (2021). Microstructure and Fracture Mechanism Investigation of Porous Silicon Nitride–Zirconia–Graphene Composite Using Multi-Scale and In-Situ Microscopy. Nanomaterials, 11(2), 285. https://doi.org/10.3390/nano11020285