Crystallization, Luminescence and Cytocompatibility of Hexagonal Calcium Doped Terbium Phosphate Hydrate Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Precipitation Method
2.2. Physico-Chemical Characterization of Solid Nanoparticles
2.3. Luminescence Spectroscopy
2.4. Cytocompatibility Tests
3. Results
3.1. Structural, Physicochemical, Morphological Characteristics, and Colloidal Stability of Solid Nanoparticles
3.2. Luminescence Properties of Cit-Ca2+:TbPO4·nH2O Nanoparticles
3.2.1. Luminescence in Solid-State
3.2.2. Luminescence of the Nanoparticles in Aqueous Suspension
3.3. Cytocompatibility of Cit-Ca2+:TbPO4·nH2O Nanoparticles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sreenivasan, V.K.A.; Zvyagin, A.V.; Goldys, E.M. Luminescent nanoparticles and their applications in the life sciences. J. Phys. Condens. Matter 2013, 25, 194101. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhu, J.-J. Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst 2013, 138, 2506. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.-C.; Lee, H.-Y.; Chen, K.; Lim, T.-S.; Wu, H.-Y.; Lin, P.-K.; Wei, P.K.; Tsao, P.H.; Chang, H.-C.; Fann, W. Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. USA 2007, 104, 727–732. [Google Scholar] [CrossRef] [Green Version]
- Yeh, Y.-C.; Creran, B.; Rotello, V.M. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale 2012, 4, 1871–1880. [Google Scholar] [CrossRef]
- Wang, F.; Tan, W.B.; Zhang, Y.; Fan, X.P.; Wang, M.Q. Luminescent nanomaterials for biological labelling. Nanotechnology 2006, 17, R1–R13. [Google Scholar] [CrossRef]
- Oltolina, F.; Gregoletto, L.; Colangelo, D.; Gómez-Morales, J.; Delgado-López, J.M.; Prat, M. Monoclonal antibody-targeted fluorescein-5-isothiocyanate-labeled biomimetic nanoapatites: A promising fluorescent probe for imaging applications. Langmuir 2015, 31, 1766–1775. [Google Scholar] [CrossRef] [PubMed]
- Neacsu, I.A.; Stoica, A.E.; Vasile, B.S.; Andronescu, E. Luminescent hydroxyapatite doped with rare earth elements for biomedical applications. Nanomaterials 2019, 9, 239. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Morales, J.; Verdugo-Escamilla, C.; Fernández-Penas, R.; Parra-Milla, C.M.; Drouet, C.; Maube-Bosc, F.; Oltolina, F.; Prat, M.; Fernández-Sánchez, J.F. Luminescent biomimetic citrate-coated europium-doped carbonated apatite nanoparticles for use in bioimaging: Physico-chemistry and cytocompatibility. RSC Adv. 2018, 8, 2385–2397. [Google Scholar] [CrossRef] [Green Version]
- Derfus, A.M.; Chan, W.C.W.; Bhatia, S.N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004, 4, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.-P.; Xu, A.-W.; Song, R.-Q.; Zhang, H.-X.; You, L.-P.; Yu, J.C.; Liu, H.-Q. Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires. JACS 2003, 125, 16025–16034. [Google Scholar] [CrossRef]
- Luo, Q.; Shen, S.; Lu, G.; Xiao, X.; Mao, D.; Wang, Y. Synthesis of cubic ordered mesoporous YPO4:Ln3+ and their photoluminescence properties. J. Mater. Chem. 2009, 19, 8079–8085. [Google Scholar] [CrossRef]
- Zhang, F.; Wong, S.S. Ambient large-scale template-mediated synthesis of high-aspect ratio single-crystalline, chemically doped rare-earth phosphate nanowires for bioimaging. ACS Nano 2010, 4, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Di, W.; Li, J.; Shirahata, N.; Sakka, Y.; Willingere, M.-G.; Pinna, N. Photoluminescence, cytotoxicity and in vitro imaging of hexagonal terbium phosphate nanoparticles doped with europium. Nanoscale 2011, 3, 1263–1269. [Google Scholar] [CrossRef]
- Ito, H.; Fujishiro, Y.; Sato, T.; Okuwaki, A. Preparation of lanthanide orthophosphates by homogeneous precipitation under hydrothermal conditions using lanthanide-EDTA chelates. Br. Ceram. Trans. 1995, 94, 146–150. [Google Scholar]
- Zollfrank, C.; Scheel, H.; Brungs, S.; Greil, P. Europium(III) orthophosphates: Synthesis, characterization, and optical properties. Cryst. Growth Des. 2008, 8, 766–770. [Google Scholar] [CrossRef]
- Iafisco, M.; Delgado-López, J.M.; Varoni, E.M.; Tampieri, A.; Rimondini, L.; Gómez-Morales, J.; Prat, M. Cell surface receptor targeted biomimetic apatite nanocrystals for cancer therapy. Small 2013, 9, 3834–3844. [Google Scholar] [CrossRef]
- Iafisco, M.; Marchetti, M.; Gómez-Morales, J.; Hernández-Hernández, M.A.; García-Ruiz, J.M.; Roveri, N. Silica gel template for calcium phosphates crystallization. Cryst. Growth Des. 2009, 9, 4912–4921. [Google Scholar] [CrossRef]
- Ramírez-Rodríguez, G.B.; Delgado López, J.M.; Gómez-Morales, J. Evolution of calcium phosphate precipitation in hanging drop vapor diffusion by in situ Raman microspectroscopy. CrystEngComm 2013, 15, 2206–2212. [Google Scholar] [CrossRef]
- Bu, W.; Zhang, L.; Hua, Z.; Chen, H.; Shi, J. Synthesis and characterization of uniform spindle-shaped microarchitectures self-assembled from aligned single-crystalline nanowires of lanthanum phosphates. Cryst. Growth Des. 2007, 7, 2305–2309. [Google Scholar] [CrossRef]
- Fang, Y.-P.; Xu, A.-W.; Dong, W.-F. Highly improved green photoluminescence from CePO4:Tb/LaPO4 core/shell nanowires. Small 2005, 1, 967–971. [Google Scholar] [CrossRef]
- Nuñez, N.O.; Liviano, S.R.; Ocaña, M.J. Citrate mediated synthesis of uniform monazite LnPO4 (Ln = La, Ce) and Ln:LaPO4 (Ln = Eu, Ce, Ce + Tb) spheres and their photoluminescence. Colloid Interface Sci. 2010, 349, 484–491. [Google Scholar] [CrossRef]
- Patra, C.R.; Bhattacharya, R.; Patra, S.; Basu, S.; Mukherjee, P.; Mukhopadhyay, D. Inorganic phosphate nanorods are a novel fluorescent label in cell biology. J. Nanobiotechnol. 2006, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Yu, M.; Li, C.; Liu, X.; Yang, J.; Yang, P.; Lin, J. Facile sonochemical synthesis and photoluminescent properties of lanthanide orthophosphate nanoparticles. J. Solid State Chem. 2009, 182, 339–342. [Google Scholar] [CrossRef]
- Wang, X.; Gao, M. A facile route for preparing rhabdophane rare earth phosphate nanorods. J. Mater. Chem. 2006, 16, 1360–1365. [Google Scholar] [CrossRef]
- Hou, Z.; Wang, L.; Lian, H.; Chai, R.; Zhang, C.; Cheng, Z.; Lin, J. Preparation and luminescence properties of Ce3+ and/or Tb3+ doped LaPO4 nanofibers and microbelts by electrospinning. J. Solid State Chem. 2009, 182, 698–708. [Google Scholar] [CrossRef]
- Xing, Y.; Li, M.; Davis, S.A.; Mann, S. Synthesis and characterization of cerium phosphate nanowires in microemulsion reaction media. J. Phys. Chem. B 2006, 110, 1111–1113. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Q.; Gao, Z.; Sun, J.; Shen, J. Fabrication of lanthanide phosphate nanocrystals with well-controlled morphologies by layer-by-layer adsorption and reaction method at room temperature. Cryst. Growth Des. 2009, 9, 3707–3713. [Google Scholar] [CrossRef]
- Huong Tran, T.; Anh Tran, K.; Khuyen Hoang, T.; Hien Pham, T.; Minh Le, Q. Fabrication and properties of terbium phosphate nanorods. Adv. Nat. Sci. Nanosci. Nanotechnol. 2012, 3, 015010. [Google Scholar] [CrossRef]
- Gómez-Morales, J.; Verdugo-Escamilla, C.; Fernández-Penas, R.; Parra-Milla, C.M.; Drouet, C.; Iafisco, M.; Oltolina, F.; Prat, M.; Fernández-Sánchez, J.F. Bioinspired crystallization, sensitized luminescence and cytocompatibility of citrate-functionalized Ca-substituted europium phosphate monohydrate nanophosphors. J. Colloid Interface Sci. 2019, 538, 174–186. [Google Scholar] [CrossRef] [Green Version]
- López-Macipe, A.; Gómez-Morales, J.; Rodríguez-Clemente, R. Nanosized hydroxyapatite precipitation from homogeneous calcium/citrate/phosphate solutions using microwave and conventional heating. Adv. Mater. 1998, 10, 49–53. [Google Scholar] [CrossRef]
- Delgado-López, J.M.; Iafisco, M.; Rodríguez, I.; Prat, M.; Gómez-Morales, J.; Tampieri, A. Crystallization of bioinspired citrate-functionalized nanoapatites with tailored carbonate content. Acta Biomater. 2012, 8, 3491–3499. [Google Scholar] [CrossRef]
- Martínez-Casado, F.J.; Iafisco, M.; Delgado-López, J.M.; Martínez-Benito, C.; Ruiz-Pérez, C.; Colangelo, D.; Oltolina, F.; Prat, M.; Gómez-Morales, J. Bioinspired citrate–apatite nanocrystals doped with divalent transition metal ions. Cryst. Growth Des. 2016, 1, 145–153. [Google Scholar] [CrossRef]
- Delgado-López, J.M.; Frison, R.; Cervellino, A.; Gómez-Morales, J.; Guagliardi, A.; Masciocchi, N. Crystal size, morphology, and growth mechanism in bio-inspired apatite nanocrystals. Adv. Funct. Mater. 2014, 24, 1090–1099. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Rawal, A.; Schmidt-Rohr, K. Strongly bound citrate stabilizes the apatite nanocrystals in bone. Proc. Natl. Acad. Sci. USA 2010, 107, 22425–22429. [Google Scholar] [CrossRef] [Green Version]
- Coelho, A.A. TOPAS and TOPAS-Academic: An optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Cryst. 2018, 51, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Combes, C.; Bareille, R.; Rey, C. Calcium carbonate–calcium phosphate mixed cement compositions for bone reconstruction. J. Biomed. Mater. Res. Part A 2006, 79, 318–328. [Google Scholar] [CrossRef] [Green Version]
- Young, R.A. Introduction to the Rietveld method. In The Rietveld Method; Young, R.A., Ed.; Oxford University Press: Oxford, UK, 1993; pp. 1–38. [Google Scholar]
- Clavier, N.; del Mesbah, A.; Szenknect, S.; Dacheux, N. Monazite, rhabdophane, xenotime & churchite: Vibrational spectroscopy of gadolinium phosphate polymorphs. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 205, 85–94. [Google Scholar] [CrossRef]
- Assaaoudi, H.; Ennaciri, A.; Rulmont, A. Vibrational spectra of hydrated rare earth orthophosphates. Vibrat. Spectr. 2001, 2, 81–90. [Google Scholar] [CrossRef]
- Donnelly, F.C.; Purcell-Milton, F.; Framont, V.; Cleary, O.; Dunne, P.W.; Gun’k, Y.K. Synthesis of CaCO3 nano- and micro-particles by dry ice carbonation. Chem. Commun. 2017, 53, 6657–6660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tada, H.; Bronkema, J.L.; Bell, A. Application of in situ surface-enhanced Raman spectroscopy (SERS) to the study of citrate oxidation on silica-supported silver nanoparticles. Catal. Lett. 2004, 92, 93–99. [Google Scholar] [CrossRef]
- Lucas, S.; Champion, E.; Bernache-Assollant, D.; Leroy, G. Rare earth phosphate powders RePO4·nH2O (Re = La, Ce or Y) II. Thermal behavior. J. Solid State Chem. 2004, 177, 312–1320. [Google Scholar] [CrossRef]
- Cho, J.; Kim, C.H. Solid-state phase transformation mechanism from hexagonal GdPO4:Eu3+ nanorods to monoclinic nanoparticles. RSC Adv. 2014, 4, 31385–31392. [Google Scholar] [CrossRef]
- Kijkowska, R. Thermal decomposition of lanthanide orthophosphates synthesized through crystallisation from phosphoric acid solution. Thermochim. Acta 2003, 404, 81–88. [Google Scholar] [CrossRef]
- Colomer, M.T.; Delgado, I.; Ortiz, A.L.; Fariñas, J.C. Microwave-assisted hydrothermal synthesis of single-crystal nanorods of rhabdophane-type Sr-doped LaPO4.nH2O. J. Am. Ceram. Soc. 2014, 97, 750–758. [Google Scholar] [CrossRef]
- Jabalera, Y.; Oltolina, F.; Prat, M.; Jimenez-Lopez, C.; Fernández-Sánchez, J.F.; Choquesillo-Lazarte, D.; Gómez-Morales, J. Eu-Doped Citrate-Coated Carbonated Apatite Luminescent Nanoprobes for Drug Delivery. Nanomaterials 2020, 10, 199. [Google Scholar] [CrossRef] [Green Version]
- Lundqvist, V.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K.A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA 2008, 105, 14265–14270. [Google Scholar] [CrossRef] [Green Version]
- Hemmilä, I.; Dakubu, S.; Mukkala, V.-M.; Siitari, H.; Lövgren, T. Europium as a label in time-resolved immunofluorometric assays. Anal. Biochem. 1984, 137, 335. [Google Scholar] [CrossRef]
- Siqueira, K.P.F.; Lima, P.P.; Ferreira, R.A.S.; Carlos, L.D.; Bittar, E.M.; Matinaga, F.M.; Paniago, R.; Krambrock, K.; Moreira, R.L.; Dias, A.J. Influence of the Matrix on the Red Emission in Europium Self-Activated Orthoceramics. Phys. Chem. C 2015, 119, 17825. [Google Scholar] [CrossRef]
- Siqueira, K.P.F.; Lima, P.P.; Ferreira, R.A.S.; Carlos, L.D.; Bittar, E.M.; Granado, E.; González, J.C.; Abelenda, A.; Moreira, R.L.; Dias, A. Lanthanide Orthoantimonate Light Emitters: Structural, Vibrational, and Optical Properties. Chem. Mater. 2014, 26, 6351. [Google Scholar] [CrossRef]
- Medina-Velazquez, D.Y.; Caldiño, U.; Morales-Ramirez, A.; Reyes-Miranda, J.; López, R.E.; Escudero, R.; Ruiz-Guerrero, R.; Morales Perez, M.F. Synthesis of luminescent terbium-thenoyltriflouroacetone MOF nanorods for green laser application. Opt. Mater. 2019, 87, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Richardson, F.S. Terbium(III) and europium(III) ions as luminescent probes and stains for biomolecular systems. Chem. Rev. 1982, 82, 541. [Google Scholar] [CrossRef]
- Guilbault, G.G. General Aspects of Luminescence Spectroscopy, Practical Fluorescence; Guilbault, G.G., Ed.; Marcel Dekker: New York, NY, USA, 1990. [Google Scholar]
- ISO 10993-5 Biological Evaluation of Medical Devices Part 5: Tests for In Vitro Cytotoxicity; International Standard Organization: Geneva, Switzerland, 2009.
- López-Macipe, A.; Gómez-Morales, J.; Rodriguez-Clemente, R. The role of pH in the adsorption of citrate ions on hydroxyapatite. J. Colloid Interface Sci. 1998, 200, 114–120. [Google Scholar] [CrossRef]
- Borroni, E.; Miola, M.; Ferraris, S.; Ricci, G.; Žužek Rožman, K.; Kostevšek, N.; Catizone, A.; Rimondini, L.; Prat, M.; Verné, E.; et al. Tumor targeting by lentiviral vectors combined with magnetic nanoparticles in mice. Acta Biomater. 2017, 59, 303–316. [Google Scholar] [CrossRef] [PubMed]
- Mooney, C.L. X-ray diffraction study of cerium phosphate and related crystals. I. Hexagonal modification. Acta Cryst. 1950, 3, 337–340. [Google Scholar] [CrossRef] [Green Version]
x [Ca2+] mol/L | Ca (wt%) | P (wt%) | Tb (wt%) | C (wt%) | H (wt%) | Cit (wt%) | H2O str (wt%) | CaCO3 (wt%) | n |
---|---|---|---|---|---|---|---|---|---|
0.01 | 0.42 | 10.5 | 61.4 | 0.46 | 0.72 | 1.21 | 5.0 | 0 | 0.88 |
0.03 | 2.91 | 10.9 | 39.8 | 0.42 | 0.74 | 1.10 | 5.44 | 0.2 | 0.86 |
0.05 | 6.76, 6.09 * | 12.0 | 27.5 | 0.52 | 0.75 | 1.12 | 6.68 | 0.76 | 0.93 |
0.07 | 10.32, 8.11 * | 11.45 | 16.9 | 1.72 | 1.04 | 3.96 | 6.33 | 1.75 | 0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Morales, J.; Fernández-Penas, R.; Romero-Castillo, I.; Verdugo-Escamilla, C.; Choquesillo-Lazarte, D.; D’Urso, A.; Prat, M.; Fernández-Sánchez, J.F. Crystallization, Luminescence and Cytocompatibility of Hexagonal Calcium Doped Terbium Phosphate Hydrate Nanoparticles. Nanomaterials 2021, 11, 322. https://doi.org/10.3390/nano11020322
Gómez-Morales J, Fernández-Penas R, Romero-Castillo I, Verdugo-Escamilla C, Choquesillo-Lazarte D, D’Urso A, Prat M, Fernández-Sánchez JF. Crystallization, Luminescence and Cytocompatibility of Hexagonal Calcium Doped Terbium Phosphate Hydrate Nanoparticles. Nanomaterials. 2021; 11(2):322. https://doi.org/10.3390/nano11020322
Chicago/Turabian StyleGómez-Morales, Jaime, Raquel Fernández-Penas, Ismael Romero-Castillo, Cristóbal Verdugo-Escamilla, Duane Choquesillo-Lazarte, Annarita D’Urso, Maria Prat, and Jorge Fernando Fernández-Sánchez. 2021. "Crystallization, Luminescence and Cytocompatibility of Hexagonal Calcium Doped Terbium Phosphate Hydrate Nanoparticles" Nanomaterials 11, no. 2: 322. https://doi.org/10.3390/nano11020322
APA StyleGómez-Morales, J., Fernández-Penas, R., Romero-Castillo, I., Verdugo-Escamilla, C., Choquesillo-Lazarte, D., D’Urso, A., Prat, M., & Fernández-Sánchez, J. F. (2021). Crystallization, Luminescence and Cytocompatibility of Hexagonal Calcium Doped Terbium Phosphate Hydrate Nanoparticles. Nanomaterials, 11(2), 322. https://doi.org/10.3390/nano11020322