Pulse Electrodeposited Ni-26 at. %Mo—A Crossover from Nanocrystalline to Amorphous
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructure and Chemistry of the As-Deposited Ni-Mo Alloy
3.2. Microhardness
3.3. Microstructure and Chemistry of the Indented Ni-26Mo
4. Conclusions
- By employing pulse electrodeposition, a Ni-26 Mo alloy was synthesized. Microstructural characterization revealed that the alloy was composed of mixed regions of amorphous and nanograins divided by NC interface network.
- Chemical analysis uncovered that the composite structure correlated to a chemical fluctuation betweenmixed regions corresponding to a higher Mo content and the interfaces to a lower Mo atomic percentage.
- Microhardness of the composite structured Ni-Mo was 7.04 ± 0.11 GPa, which was up to 40% higher than its extremely fine NC counterparts.
- Microstructure characterization and chemical analysis on the indented sample indicated that plastic deformation of the composite was mainly accommodated by crystallization. This crystallization process was accompanied by atomic diffusion, which not only suppressed GB-mediated activities but also reduced the tendency of strain localization by shear banding.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meyers, M.; Mishra, A.; Benson, D. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 2006, 51, 427–556. [Google Scholar] [CrossRef]
- Hu, J.; Shi, Y.N.; Sauvage, X.; Sha, G.; Lu, K. Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 2017, 355, 1292–1296. [Google Scholar] [CrossRef] [PubMed]
- Greer, A.L. Metallic Glasses. Science 1995, 267, 1947–1953. [Google Scholar] [CrossRef] [PubMed]
- Schuh, A.C.; Hufnagel, T.C.; Ramamurty, U. Mechanical behavior of amorphous alloys. Acta Mater. 2007, 55, 4067–4109. [Google Scholar] [CrossRef]
- Trelewicz, J.R.; Schuh, C.A. The Hall–Petch breakdown in nanocrystalline metals: A crossover to glass-like deformation. Acta Mater. 2007, 55, 5948–5958. [Google Scholar] [CrossRef]
- Chen, N.; Frank, R.; Asao, N.; Louzguine-Luzgin, D.; Sharma, P.; Wang, J.; Xie, G.; Ishikawa, Y.; Hatakeyama, N.; Lin, Y.; et al. Formation and properties of Au-based nanograined metallic glasses. Acta Mater. 2011, 59, 6433–6440. [Google Scholar] [CrossRef]
- Brink, T.; Albe, K. From metallic glasses to nanocrystals: Molecular dynamics simulations on the crossover from glass-like to grain-boundary-mediated deformation behaviour. Acta Mater. 2018, 156, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Zhang, J.; Liu, C.; Wang, Q.; Lu, J. Ductility of an ultrastrong glass-crystal nano-dual-phase alloy in sub-micron. Scr. Mater. 2020, 183, 17–21. [Google Scholar] [CrossRef]
- Khalajhedayati, A.; Rupert, T.J. Disruption of Thermally-Stable Nanoscale Grain Structures by Strain Localization. Sci. Rep. 2015, 5, 10663. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Li, J.; Shi, Y.-N. Suppression of grain boundary migration at cryogenic temperature in an extremely fine nanograined Ni-Mo alloy. J. Mater. Sci. Technol. 2020, 57, 65–69. [Google Scholar] [CrossRef]
- Schiøtz, J.; Jacobsen, K.W. A Maximum in the Strength of Nanocrystalline Copper. Science 2003, 301, 1357–1359. [Google Scholar] [CrossRef] [Green Version]
- Vaidyanathan, R.; Dao, M.; Ravichandran, G.; Suresh, S. Study of mechanical deformation in bulk metallic glass through instrumented indentation. Acta Mater. 2001, 49, 3781–3789. [Google Scholar] [CrossRef]
- Zhang, Y.; Greer, A.L. Thickness of shear bands in metallic glasses. Appl. Phys. Lett. 2006, 89, 071907. [Google Scholar] [CrossRef]
- Wu, G.; Chan, K.-C.; Zhu, L.; Sun, L.; Lu, J. Dual-phase nanostructuring as a route to high-strength magnesium alloys. Nat. Cell Biol. 2017, 545, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.M.; Li, J.; Hamza, A.V.; Barbee, T.W. Ductile crystalline-amorphous nanolaminates. Proc. Natl. Acad. Sci. USA 2007, 104, 11155–11160. [Google Scholar] [CrossRef] [Green Version]
- Jian, W.-R.; Wang, L.; Yao, X.; Luo, S.-N. Balancing strength, hardness and ductility of Cu64Zr36 nanoglasses via embedded nanocrystals. Nanotechnology 2017, 29, 025701. [Google Scholar] [CrossRef]
- Schuler, J.D.; Donaldson, O.K.; Rupert, T.J. Amorphous complexions enable a new region of high temperature stability in nanocrystalline Ni-W. Scr. Mater. 2018, 154, 49–53. [Google Scholar] [CrossRef] [Green Version]
- McKone, J.R.; Sadtler, B.F.; Werlang, C.A.; Lewis, N.S.; Gray, H.B. Ni–Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution. ACS Catal. 2013, 3, 166–169. [Google Scholar] [CrossRef]
- De Lima-Neto, P.; Correia, A.N.; Vaz, G.L.; Casciano, P.N.S. Morphological, structural, microhardness and corrosion characterisations of electrodeposited Ni-Mo and Cr coatings. J. Braz. Chem. Soc. 2010, 21, 1968–1976. [Google Scholar] [CrossRef] [Green Version]
- Beltowska-Lehman, E.; Bigos, A.; Indyka, P.; Kot, M. Electrodeposition and characterisation of nanocrystalline Ni–Mo coatings. Surf. Coat. Technol. 2012, 211, 67–71. [Google Scholar] [CrossRef]
- Archard, J.F. Contact and Rubbing of Flat Surfaces. J. Appl. Phys. 1953, 24, 981–988. [Google Scholar] [CrossRef]
- Hall, E.O. The Deformation and Ageing of Mild Steel: III Discussion of Results. Proc. Phys. Soc. Sect. B 1951, 64, 747–753. [Google Scholar] [CrossRef]
- Petch, N.J. The Cleavage Strength of Polycrystal. J. Iron Steel Inst. 1953, 174, 25–28. [Google Scholar]
- Hu, J.; Zheng, X.G.; Shi, Y.-N.; Lu, K. Effect of a Mixture of Saccharin and 2-Butyne-1,4-diol on Electrodeposition of Nano-Grained Ni-Mo Alloys. J. Electrochem. Soc. 2017, 164, D348–D353. [Google Scholar] [CrossRef]
- Zheng, X.; Hu, J.; Li, J.; Shi, Y. Achieving Ultrahigh Hardness in Electrodeposited Nanograined Ni-Based Binary Alloys. Nanomaterials 2019, 9, 546. [Google Scholar] [CrossRef] [Green Version]
- Chassaing, E.; Portail, N.; Levy, A.-F.; Wang, G. Characterisation of electrodeposited nanocrystalline Ni—Mo alloys. J. Appl. Electrochem. 2004, 34, 1085–1091. [Google Scholar] [CrossRef]
- Allahyarzadeh, M.; Roozbehani, B.; Ashrafi, A. Electrodeposition of high Mo content amorphous/nanocrystalline Ni–Mo alloys using 1-ethyl-3-methyl-imidazolium chloride ionic liquid as an additive. Electrochim. Acta 2011, 56, 10210–10216. [Google Scholar] [CrossRef]
- Donten, M.; Cesiulis, H.; Stojek, Z. Electrodeposition of amorphous/nanocrystalline and polycrystalline Ni–Mo alloys from pyrophosphate baths. Electrochim. Acta 2005, 50, 1405–1412. [Google Scholar] [CrossRef]
- Marlot, A.; Kern, P.; Landolt, D. Pulse plating of Ni–Mo alloys from Ni-rich electrolytes. Electrochim. Acta 2002, 48, 29–36. [Google Scholar] [CrossRef]
- Yin, D.; Marvel, C.J.; Cui, F.Y.; Vinci, R.P.; Harmer, M.P. Microstructure and fracture toughness of electrodeposited Ni-21 at. % W alloy thick films. Acta Mater. 2018, 143, 272–280. [Google Scholar] [CrossRef]
- Schuh, C.A.; Nieh, T.G.; Yamasaki, T. Hall–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel. Scr. Mater. 2002, 46, 735–740. [Google Scholar] [CrossRef]
- Giallonardo, J.D.; Erb, U.; Aust, K.T.; Palumbo, G. The influence of grain size and texture on the Young’s modulus of nanocrystalline nickel and nickel–iron alloys. Philos. Mag. 2011, 91, 4594–4605. [Google Scholar] [CrossRef]
- Zhou, Y.; Erb, U.; Aust, K.T.; Palumbo, G. The effects of triple junctions and grain boundaries on hardness and Young’s modulus in nanostructured Ni–P. Scr. Mater. 2003, 48, 825–830. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, H.; Huang, W.; Tian, H. Effects of peak current density on the mechanical properties of nanocrystalline Ni–Co alloys produced by pulse electrodeposition. Appl. Surf. Sci. 2008, 254, 6865–6869. [Google Scholar] [CrossRef]
- Detor, A.J.; Schuh, C.A. Tailoring and patterning the grain size of nanocrystalline alloys. Acta Mater. 2007, 55, 371–379. [Google Scholar] [CrossRef]
- Yip, S. The strongest size. Nat. Cell Biol. 1998, 391, 532–533. [Google Scholar] [CrossRef]
- Gleiter, H.; Schimmel, T.; Hahn, H. Nanostructured solids—From nano-glasses to quantum transistors. Nano Today 2014, 9, 17–68. [Google Scholar] [CrossRef]
- Zhou, X.; Li, X.Y.; Lu, K. Enhanced thermal stability ofnanograined metals below a critical grain size. Science 2018, 360, 526–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.-J.; Choi, Y.; Suresh, S.; Argon, A.S. Nanocrystallization during Nanoindentation of a Bulk Amorphous Metal Alloy at Room Temperature. Science 2002, 295, 654–657. [Google Scholar] [PubMed]
- Chen, H.; He, Y.; Shiflet, G.J.; Poon, S.J. Deformation-induced nanocrystal formation in shear bands of amorphous alloys. Nature 1994, 367, 541–543. [Google Scholar] [CrossRef]
- Jiang, W.; Atzmon, M. The effect of compression and tension on shear-band structure and nanocrystallization in amorphous Al90Fe5Gd5: A high-resolution transmission electron microscopy study. Acta Mater. 2003, 51, 4095–4105. [Google Scholar] [CrossRef]
- Lee, S.-W.; Huh, M.-Y.; Fleury, E.; Lee, J.-C. Crystallization-induced plasticity of Cu–Zr containing bulk amorphous alloys. Acta Mater. 2006, 54, 349–355. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Shi, Y.; Li, X. Pulse Electrodeposited Ni-26 at. %Mo—A Crossover from Nanocrystalline to Amorphous. Nanomaterials 2021, 11, 681. https://doi.org/10.3390/nano11030681
Li J, Shi Y, Li X. Pulse Electrodeposited Ni-26 at. %Mo—A Crossover from Nanocrystalline to Amorphous. Nanomaterials. 2021; 11(3):681. https://doi.org/10.3390/nano11030681
Chicago/Turabian StyleLi, Jiongxian, Yinong Shi, and Xiuyan Li. 2021. "Pulse Electrodeposited Ni-26 at. %Mo—A Crossover from Nanocrystalline to Amorphous" Nanomaterials 11, no. 3: 681. https://doi.org/10.3390/nano11030681
APA StyleLi, J., Shi, Y., & Li, X. (2021). Pulse Electrodeposited Ni-26 at. %Mo—A Crossover from Nanocrystalline to Amorphous. Nanomaterials, 11(3), 681. https://doi.org/10.3390/nano11030681