The Improvement of Energy Storage Performance by Sucrose-Derived Carbon Foams via Incorporating Nitrogen Atoms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Carbon Foams
2.3. Structure Characterization
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Characterization of Carbon Materials
3.2. Electrochemical Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cano-Casanova, L.; Amorós-Pérez, A.; Ouzzine, M.; Román-Martínez, M.C.; Lillo-Rodenas, M.A. Enhancement of the TiO2 photoactivity for propene oxidation by carbon incorporation using saccharose in hydrothermal synthesis. J. Environ. Chem. Eng. 2020, 9, 104941. [Google Scholar] [CrossRef]
- Matos, J.; Laine, J. A carbon macro-network from the controlled pyrolysis of saccharose. J. Mater. Sci. Lett. 1998, 17, 649–651. [Google Scholar] [CrossRef]
- Kubota, K.; Shimadzu, S.; Yabuuchi, N.; Tominaka, S.; Shiraishi, S.; Abreu-Sepulveda, M.; Manivannan, A.; Gotoh, K.; Fukunishi, M.; Dahbi, M. Structural Analysis of Sucrose-Derived Hard Carbon and Correlation with the Electrochemical Properties for Lithium, Sodium, and Potassium Insertion. Chem. Mater. 2020, 32, 2961–2977. [Google Scholar] [CrossRef]
- Bernard, S.; Beyssac, O.; Benzerara, K.; Findling, N.; Tzvetkov, G.; Brown, G.E. XANES, Raman and XRD study of anthracene-based cokes and saccharose-based chars submitted to high-temperature pyrolysis. Carbon 2010, 48, 2506–2516. [Google Scholar] [CrossRef]
- Myronyuk, I.F.; Mandzyuk, V.I.; Sachko, V.M.; Gun’ko, V.M. Structural features of carbons produced using glucose, lactose, and saccharose. Nanoscale Res. Lett. 2016, 11, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, L.; Yushin, G. Electrical double layer capacitors with sucrose derived carbon electrodes in ionic liquid electrolytes. J. Power Source 2011, 196, 4072–4079. [Google Scholar] [CrossRef]
- Bai, J.; Lu, B.; Bo, X.; Guo, L. Electrochemical property and electroanalytical application of large mesoporous carbons. Electrochem. Commun. 2010, 12, 1563–1567. [Google Scholar] [CrossRef]
- Gao, Z.; Zhu, H.; Li, Y.; Fan, S.; Luo, H.; Xue, J.; Zhang, J. Preparation and electrochemical properties of sucrose-based porous carbon materials by combustion expansion-chemical activation method. J. Appl. Electrochem. 2020, 50, 549–558. [Google Scholar] [CrossRef]
- Vazquez-Samperio, J.; Acevedo-Peña, P.; Guzmán-Vargas, A.; Reguera, E.; Cordoba-Tuta, E. Incorporation of heteroatoms into reticulated vitreous carbon foams derived from sucrose to improve its energy storage performance. Int. J. Energy Res. 2020. [Google Scholar] [CrossRef]
- Wei, L.; Yushin, G. Electrical double layer capacitors with activated sucrose-derived carbon electrodes. Carbon 2011, 49, 4830–4838. [Google Scholar] [CrossRef]
- Krstić, S.; Kragović, M.; Dodevski, V.; Marinković, A.; Kaluđerović, B.; Žerjav, G.; Pintar, A.; Pagnacco, M.; Stojmenović, M. Influence of temperature and different hydroxides on properties of activated carbon prepared from saccharose. Characterization, thermal degradation kinetic and dyes removal from water solutions. Sci. Sinter. 2018, 50, 255–273. [Google Scholar] [CrossRef]
- Vahdati-Khajeh, S.; Zirak, M.; Tejrag, R.Z.; Fathi, A.; Lamei, K.; Eftekhari-Sis, B. Biocompatible magnetic N-rich activated carbon from egg white biomass and sucrose: Preparation, characterization and investigation of dye adsorption capacity from aqueous solution. Surf. Interfaces 2019, 15, 157–165. [Google Scholar] [CrossRef]
- Woźnica, N.; Hawełek, ᴌ.; Duber, S.; Fischer, H.; Honkimäki, V.; Pawlyta, M.; Bulou, A.; Burian, A. The atomic scale structure of saccharose-based carbons. Philos. Mag. 2017, 97, 1675–1697. [Google Scholar] [CrossRef]
- Armandi, M.; Bonelli, B.; Geobaldo, F.; Garrone, E. Nanoporous carbon materials obtained by sucrose carbonization in the presence of KOH. Microporous Mesoporous Mater. 2010, 132, 414–420. [Google Scholar] [CrossRef]
- Lang, X.; Wang, X.; Li, Y.; Cai, K.; Li, L.; Zhang, Q. Electrochemical performances of KOH activated carbon coated vanadium oxide with sucrose as carbon source for sulfur immobilizers of lithium-sulfur batteries. Sustain. Energy Technol. Assess. 2021, 43, 100947. [Google Scholar]
- Zhao, H.; Lu, X.; Wang, Y.; Sun, B.; Wu, X.; Lu, H. Effects of additives on sucrose-derived activated carbon microspheres synthesized by hydrothermal carbonization. J. Mater. Sci. 2017, 52, 10787–10799. [Google Scholar] [CrossRef]
- Wang, Q.; Li, H.; Chen, L.; Huang, X. Monodispersed hard carbon spherules with uniform nanopores. Carbon 2001, 39, 2211–2214. [Google Scholar] [CrossRef]
- Kim, J.-K.; Cheruvally, G.; Ahn, J.-H. Electrochemical properties of LiFePO4/C synthesized by mechanical activation using sucrose as carbon source. J. Solid State Electrochem. 2008, 12, 799–805. [Google Scholar] [CrossRef]
- Wang, K.; Cai, R.; Yuan, T.; Yu, X.; Ran, R.; Shao, Z. Process investigation, electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source. Electrochim. Acta 2009, 54, 2861–2868. [Google Scholar] [CrossRef]
- Scherdel, C.; Reichenauer, G. Microstructure and morphology of porous carbons derived from sucrose. Carbon 2009, 47, 1102–1111. [Google Scholar] [CrossRef]
- Li, L.; Song, H.; Chen, X. Ordered mesoporous carbons from the carbonization of sulfuric-acid-treated silica/triblock copolymer/sucrose composites. Microporous Mesoporous Mater. 2006, 94, 9–14. [Google Scholar] [CrossRef]
- Ting, C.-C.; Wu, H.-Y.; Vetrivel, S.; Saikia, D.; Pan, Y.-C.; Fey, G.T.K.; Kao, H.-M. A one-pot route to synthesize highly ordered mesoporous carbons and silicas through organic–inorganic self-assembly of triblock copolymer, sucrose and silica. Microporous Mesoporous Mater. 2010, 128, 1–11. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Li, M.; El-Kady, M.F.; Kaner, R.B. Next-Generation Activated Carbon Supercapacitors: A Simple Step in Electrode Processing Leads to Remarkable Gains in Energy Density. Adv. Funct. Mater. 2017, 27, 1605745. [Google Scholar] [CrossRef]
- Chiu, Y.-H.; Lin, L.-Y. Effect of activating agents for producing activated carbon using a facile one-step synthesis with waste coffee grounds for symmetric supercapacitors. J. Taiwan Inst. Chem. Eng. 2019, 101, 177–185. [Google Scholar] [CrossRef]
- Yang, C.; Lan, J.-L.; Liu, W.-X.; Liu, Y.; Yu, Y.-H.; Yang, X.-P. High-performance Li-ion capacitor based on an activated carbon cathode and well-dispersed ultrafine TiO2 nanoparticles embedded in mesoporous carbon nanofibers anode. ACS Appl. Mater. interfaces 2017, 9, 18710–18719. [Google Scholar] [CrossRef]
- Feng, J.; Chernova, N.A.; Omenya, F.; Tong, L.; Rastogi, A.C.; Whittingham, M.S. Effect of electrode charge balance on the energy storage performance of hybrid supercapacitor cells based on LiFePO4 as Li-ion battery electrode and activated carbon. J. Solid State Electrochem. 2018, 22, 1063–1078. [Google Scholar] [CrossRef]
- Okuda, R.; Nakano, K.; Suematsu, K.; Watanabe, K.; Ilnicka, A.; Łukaszewicz, J.P.; Shimanoe, K. Chemical Activation of Nitrogen-doped Carbon Derived from Chitosan with ZnCl2 to Produce a High-performance Gas Diffusion-type Oxygen Electrode. Electrochemistry 2020, 89, 36–42. [Google Scholar] [CrossRef]
- Ilnicka, A.; Kamedulski, P.; Skorupska, M.; Lukaszewicz, J.P. Metal-free nitrogen-rich carbon foam derived from amino acids for the oxygen reduction reaction. J. Mater. Sci. 2019, 54, 14859–14871. [Google Scholar] [CrossRef] [Green Version]
- Ilnicka, A.; Lukaszewicz, J.P.; Shimanoe, K.; Yuasa, M. Urea treatment of nitrogen-doped carbon leads to enhanced performance for the oxygen reduction reaction. J. Mater. Res. 2018, 33, 1612. [Google Scholar] [CrossRef]
- Huang, X.; Xie, Z.; He, X.; Sun, H.; Tong, C.; Xie, D. Electric double layer capacitors using activated carbon prepared from pyrolytic treatment of sugar as their electrodes. Synth. Met. 2003, 135, 235–236. [Google Scholar] [CrossRef]
- Guo, P.; Gu, Y.; Lei, Z.; Cui, Y.; Zhao, X. Preparation of sucrose-based microporous carbons and their application as electrode materials for supercapacitors. Microporous Mesoporous Mater. 2012, 156, 176–180. [Google Scholar] [CrossRef]
- Subramanian, N.; Viswanathan, B. Nitrogen-and oxygen-containing activated carbons from sucrose for electrochemical supercapacitor applications. RSC Adv. 2015, 5, 63000–63011. [Google Scholar] [CrossRef]
- Kumar, R.; Soam, A.; Dusane, R.O.; Bhargava, P. Sucrose derived carbon coated silicon nanowires for supercapacitor application. J. Mater. Sci. Mater. Electron. 2018, 29, 1947–1954. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nanosci. Technol. Collect. Rev. Nat. J. 2010, 320–329. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Yang, Y.; Mu, B.; Chen, Y.; Zhang, J.; Zhao, X. Facile synthesis of microporous carbon for supercapacitors with a LiNO3 electrolyte. Carbon 2016, 100, 214–222. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P.-L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006, 313, 1760–1763. [Google Scholar] [CrossRef] [Green Version]
- Huber, G.W.; Chheda, J.N.; Barrett, C.J.; Dumesic, J.A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 2005, 308, 1446–1450. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.S.; Kim, Y.H.; Hong, J.S.; Suh, J.K.; Cho, G.J. The adsorption properties of surface modified activated carbon fibers for hydrogen storages. Catal. Today 2007, 120, 420–425. [Google Scholar] [CrossRef]
- Paredes, J.; Martinez-Alonso, A.; Yamazaki, T.; Matsuoka, K.; Tascon, J.; Kyotani, T. Structural investigation of zeolite-templated, ordered microporous carbon by scanning tunneling microscopy and Raman spectroscopy. Langmuir 2005, 21, 8817–8823. [Google Scholar] [CrossRef]
- Si, W.; Zhou, J.; Zhang, S.; Li, S.; Xing, W.; Zhuo, S. Tunable N-doped or dual N, S-doped activated hydrothermal carbons derived from human hair and glucose for supercapacitor applications. Electrochim. Acta 2013, 107, 397–405. [Google Scholar] [CrossRef]
- Hao, P.; Zhao, Z.; Tian, J.; Li, H.; Sang, Y.; Yu, G.; Cai, H.; Liu, H.; Wong, C.; Umar, A. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 2014, 6, 12120–12129. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.; Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 2001, 64, 075414. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, S.B.; Patil, U.M.; Shackery, I.; Sohn, J.S.; Lee, S.; Park, B.; Jun, S. High-performance supercapacitor electrode based on a polyaniline nanofibers/3D graphene framework as an efficient charge transporter. J. Mater. Chem. A 2014, 2, 4989–4998. [Google Scholar] [CrossRef]
- Tan, Y.; Xu, C.; Chen, G.; Fang, X.; Zheng, N.; Xie, Q. Facile synthesis of manganese-oxide-containing mesoporous nitrogen-doped carbon for efficient oxygen reduction. Adv. Funct. Mater. 2012, 22, 4584–4591. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Y.; Zhou, W.; Li, L.; Huang, S.; Chen, S. Biomass-derived nitrogen self-doped porous carbon as effective metal-free catalysts for oxygen reduction reaction. Nanoscale 2015, 7, 6136–6142. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Samperio, J.; Sánchez-Padilla, N.; Acevedo-Peña, P.; Cano, A.; Nava, N.; Morales-Acosta, D.; Oliver-Tolentino, M. Ni Prussian blue analogue/mesoporous carbon composite as electrode material for aqueous K-ion energy storage: Effect of carbon-framework interaction on its electrochemical behavior. ChemistrySelect 2018, 3, 11441–11450. [Google Scholar] [CrossRef]
- Fan, X.; Zhang, L.; Zhang, G.; Shu, Z.; Shi, J. Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture. Carbon 2013, 61, 423–430. [Google Scholar] [CrossRef]
- Hulicova-Jurcakova, D.; Seredych, M.; Lu, G.Q.; Bandosz, T.J. Combined effect of nitrogen-and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 2009, 19, 438–447. [Google Scholar] [CrossRef]
- Liu, H.; Song, H.; Chen, X.; Zhang, S.; Zhou, J.; Ma, Z. Effects of nitrogen-and oxygen-containing functional groups of activated carbon nanotubes on the electrochemical performance in supercapacitors. J. Power Source 2015, 285, 303–309. [Google Scholar] [CrossRef]
- Seredych, M.; Hulicova-Jurcakova, D.; Lu, G.Q.; Bandosz, T.J. Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance. Carbon 2008, 46, 1475–1488. [Google Scholar] [CrossRef]
- Chen, P.; Wang, L.-K.; Wang, G.; Gao, M.-R.; Ge, J.; Yuan, W.-J.; Shen, Y.-H.; Xie, A.-J.; Yu, S.-H. Nitrogen-doped nanoporous carbon nanosheets derived from plant biomass: An efficient catalyst for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 4095–4103. [Google Scholar] [CrossRef]
- Wang, C.; Hu, F.; Yang, H.; Zhang, Y.; Lu, H.; Wang, Q. 1.82 wt.% Pt/N, P co-doped carbon overwhelms 20 wt.% Pt/C as a high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Res. 2017, 10, 238–246. [Google Scholar] [CrossRef]
- Fang, B.; Binder, L. A modified activated carbon aerogel for high-energy storage in electric double layer capacitors. J. Power Source 2006, 163, 616–622. [Google Scholar] [CrossRef]
- Wu, D.; Chen, X.; Lu, S.; Liang, Y.; Xu, F.; Fu, R. Study on synergistic effect of ordered mesoporous carbon and carbon aerogel during electrochemical charge–discharge process. Microporous Mesoporous Mater. 2010, 131, 261–264. [Google Scholar] [CrossRef]
- Yuan, D.; Chen, J.; Zeng, J.; Tan, S. Preparation of monodisperse carbon nanospheres for electrochemical capacitors. Electrochem. Commun. 2008, 10, 1067–1070. [Google Scholar] [CrossRef]
- Hu, C.-C.; Wang, C.-C. Effects of electrolytes and electrochemical pretreatments on the capacitive characteristics of activated carbon fabrics for supercapacitors. J. Power Source 2004, 125, 299–308. [Google Scholar] [CrossRef]
- An, K.H.; Jeon, K.K.; Heo, J.K.; Lim, S.C.; Bae, D.J.; Lee, Y.H. High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole. J. Electrochem. Soc. 2002, 149, A1058. [Google Scholar] [CrossRef]
- Pal, B.; Yang, S.; Ramesh, S.; Thangadurai, V.; Jose, R. Electrolyte selection for supercapacitive devices: A critical review. Nanoscale Adv. 2019, 1, 3807–3835. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Hao, S.; Hao, P.; Sang, Y.; Manivannan, A.; Wu, N.; Liu, H. Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode. J. Mater. Chem. A 2015, 3, 15049–15056. [Google Scholar] [CrossRef]
- Deng, Y.; Xie, Y.; Zou, K.; Ji, X. Review on recent advances in nitrogen-doped carbons: Preparations and applications in supercapacitors. J. Mater. Chem. A 2016, 4, 1144–1173. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, J.; Zhang, B.; Dong, S.; Guo, X.; Mu, X.; Fei, B. A novel hierarchical porous nitrogen-doped carbon derived from bamboo shoot for high performance supercapacitor. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, K.; Ren, M.; Zhitomirsky, I. Activated carbon-coated carbon nanotubes for energy storage in supercapacitors and capacitive water purification. ACS Sustain. Chem. Eng. 2014, 2, 1289–1298. [Google Scholar] [CrossRef]
- Song, H.-K.; Hwang, H.-Y.; Lee, K.-H.; Dao, L.H. The effect of pore size distribution on the frequency dispersion of porous electrodes. Electrochim. Acta 2000, 45, 2241–2257. [Google Scholar] [CrossRef]
- Macdonald, D.D. Reflections on the history of electrochemical impedance spectroscopy. Electrochim. Acta 2006, 51, 1376–1388. [Google Scholar] [CrossRef]
Sample | Elemental Content (wt%) | SBET 1 (m2 g−1) | Vt 2 (cm3 g−1) | Vmi 3 (cm3 g−1) | Vme 4 (cm3 g−1) | ||
---|---|---|---|---|---|---|---|
C | H | N | |||||
GR | 87.32 | 0.90 | 0.72 | 750 | 1.00 | 0.13 | 0.87 |
SGF-3:1 | 90.18 | 0.71 | 0.60 | 1111 | 0.70 | 0.11 | 0.59 |
SCS-3:1 | 67.79 | 1.54 | 1.97 | 1313 | 0.60 | 0.13 | 0.47 |
SGF-5:3 | 79.72 | 1.13 | 0.30 | 771 | 0.52 | 0.20 | 0.32 |
SCS-5:3 | 62.49 | 1.97 | 2.13 | 841 | 0.37 | 0.30 | 0.07 |
Sample | ID | Raman Shift (cm−1) | IG | Raman Shift (cm−1) | I2D | Raman Shift (cm−1) | ID/IG | I2D/IG |
---|---|---|---|---|---|---|---|---|
GR | 0.64 | 1341 | 1 | 1570 | 0.4 | 2686 | 0.64 | 0.4 |
SGF-3:1 | 1 | 1339 | 0.99 | 1587 | 0.23 | 1699 | 1.02 | 0.23 |
SCS-3:1 | 1 | 1341 | 0.99 | 1593 | 0.2 | 2779 | 1.01 | 0.2 |
SGF-5:3 | 1 | 1346 | 0.98 | 1583 | 0.26 | 2699 | 1.02 | 0.26 |
SCS-5:3 | 1 | 1341 | 1 | 1598 | 0.19 | 2755 | 1 | 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skorupska, M.; Kamedulski, P.; Lukaszewicz, J.P.; Ilnicka, A. The Improvement of Energy Storage Performance by Sucrose-Derived Carbon Foams via Incorporating Nitrogen Atoms. Nanomaterials 2021, 11, 760. https://doi.org/10.3390/nano11030760
Skorupska M, Kamedulski P, Lukaszewicz JP, Ilnicka A. The Improvement of Energy Storage Performance by Sucrose-Derived Carbon Foams via Incorporating Nitrogen Atoms. Nanomaterials. 2021; 11(3):760. https://doi.org/10.3390/nano11030760
Chicago/Turabian StyleSkorupska, Malgorzata, Piotr Kamedulski, Jerzy P. Lukaszewicz, and Anna Ilnicka. 2021. "The Improvement of Energy Storage Performance by Sucrose-Derived Carbon Foams via Incorporating Nitrogen Atoms" Nanomaterials 11, no. 3: 760. https://doi.org/10.3390/nano11030760
APA StyleSkorupska, M., Kamedulski, P., Lukaszewicz, J. P., & Ilnicka, A. (2021). The Improvement of Energy Storage Performance by Sucrose-Derived Carbon Foams via Incorporating Nitrogen Atoms. Nanomaterials, 11(3), 760. https://doi.org/10.3390/nano11030760