Molybdenum–Tungsten Blue Nanoparticles as a Precursor for Ultrafine Binary Carbides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Molybdenum–Tungsten Blue Dispersions
2.3. Characterization of Molybdenum–Tungsten Blue Dispersions
3. Results
3.1. Characterization of Molybdenum–Tungsten Blue Nanoparticles
- the resulting polyoxometalate complexes differ in composition and structure from molybdenum oxide nanoclusters of the Mo154-x family;
- molybdenum oxide nanoclusters of the Mo154-x family are formed in the system, on the surface of which tungsten ions are adsorbed in a variable oxidation state; and
- the dispersed phase is represented by Mo154-x nanoclusters, and the system contains dissolved colored reduced forms of tungsten.
3.2. Properties of Molybdenum–Tungsten Blue Dispersions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, Y.; Guan, G.; Hao, X.; Cao, J.; Abudula, A. Molybdenum carbide as alternative catalyst for hydrogen production—A review. Ren. Sust. Energy Rev. 2018, 75, 1101–1129. [Google Scholar] [CrossRef]
- Lamic, A.F.; Shin, C.H.; Djéga-Mariadassou, G.; Potvin, C. Characterization of New Bimetallic Oxycarbide (MoWC0.5O0.6) for Bifunctional Isomerization of n-Heptane. Catal. Lett. 2006, 107, 89–94. [Google Scholar] [CrossRef]
- Mehdad, A.; Jentoft, R.E.; Jentoft, F.C. Passivation Agents and Conditions for Mo2C and W2C: Effect on Catalytic Activity for Toluene Hydrogenation. J. Catal. 2017, 347, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.; Ge, X.; Wang, H.; Liu, Z.; Fisher, A.; Wang, X. Novel Molybdenum Carbide–Tungsten Carbide Composite Nanowires and Their Electrochemical Activation for Efficient and Stable Hydrogen Evolution. Adv. Fun. Mat. 2015, 25, 1520–1526. [Google Scholar]
- Garcia-Esparza, A.T.; Cha, D.; Ou, Y.; Kubota, J.; Domen, K.; Takanabe, K. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting. ChemSusChem 2013, 6, 168–181. [Google Scholar] [CrossRef]
- Mehdad, A.; Jentoft, R.E.; Jentoft, F.C. Single-phase mixed molybdenum-niobium carbides: Synthesis, characterization and multifunctional catalytic behavior in toluene conversion. J. Catal. 2017, 351, 161–173. [Google Scholar] [CrossRef]
- Leroy Covington, K.M.; Islam, A.W.; Roberts, K.L. Synthesis and characterization of nanostructured molybdenum & tungsten carbide materials, and study of diffusion model. Pol. J. Chem. Tech. 2012, 14, 28–34. [Google Scholar]
- Regmi, Y.N.; Wan, C.; Duffee, K.D.; Leonard, B.M. Nanocrystalline Mo2C as a bifunctional water splitting electrocatalyst. Chem. Cat. Chem. 2015, 7, 3911–3916. [Google Scholar] [CrossRef] [Green Version]
- Bastos, L.; Monteiro, W.; Zacharias, M.; da Cruz, G.; Rodrigues, J.A. Preparation and characterization of Mo/W bimetallic carbides by using different synthesis methods. Catal. Lett. 2008, 120, 48–55. [Google Scholar] [CrossRef]
- Kushkhov, K.B.; Kardanov, A.L.; Adamokova, M.N. Electrochemical synthesis of binary molybdenum–tungsten carbides (Mo,W)2C from tungstate–molybdate–carbonate melts. Russ. Metall. 2013, 2, 79–85. [Google Scholar] [CrossRef]
- Rasaki, S.A.; Zhang, B.; Anbalgam, K.; Thomas, T.; Yang, M. Synthesis and application of nano-structured metal nitrides and carbides: A review. Prog. Solid State Chem. 2018, 50, 1–15. [Google Scholar] [CrossRef]
- Alaba, P.A.; Abbas, A.; Huang, J.; Wan Daud, W.M.A. Molybdenum carbide nanoparticle: Understanding the surface properties and reaction mechanism for energy production towards a sustainable future. Ren. Sust. Energy Rev. 2018, 91, 287–300. [Google Scholar] [CrossRef]
- Giordano, C.; Erpen, C.; Yao, W.; Antonietti, M. Synthesis of Mo and W carbide and nitride nanoparticles via a simple “urea glass” route. Nano. Lett. 2008, 8, 59–63. [Google Scholar] [CrossRef]
- Gao, Q.; Zhang, C.; Xie, S.; Hua, W.; Zhang, Y.; Ren, N.; Xu, H.; Tang, Y. Synthesis of nanoporous molybdenum carbide nanowires based on organic- inorganic hybrid nanocomposites with sub-nanometer periodic structures. Chem. Mater. 2009, 21, 5560–5562. [Google Scholar] [CrossRef]
- Mehdad, A.; Jentoft, R.E.; Jentoft, F.C. Single-phase mixed molybdenum–tungsten carbides: Synthesis, characterization and catalytic activity for toluene conversion. Catal. Today 2019, 323, 112–122. [Google Scholar] [CrossRef]
- Long, D.L.; Burkholder, E.; Cronin, L. Polyoxometalate clusters, nanostructures and materials: From self-assembly to designer materials and devices. Chem. Soc. Rev. 2007, 36, 105–121. [Google Scholar] [CrossRef]
- Botar, B.; Ellern, A.; Kögerler, P. Mapping the formation areas of giant molybdenum blue clusters: A spectroscopic study. Dalton Trans. 2012, 41, 8951–8959. [Google Scholar] [CrossRef] [Green Version]
- Liu, T. An unusually slow self-assembly of inorganic ions in dilute aqueous solution. J. Am. Chem. Soc. 2003, 125, 312–313. [Google Scholar] [CrossRef]
- Liu, T.; Diemann, E.; Müller, A. Hydrophilic inorganic macro-ions in solution: Unprecedented self-assembly emerging from historical “blue waters”. J. Chem. Educ. 2007, 84, 526–532. [Google Scholar] [CrossRef]
- Müller, A.; Roy, S. En route from the mystery of molybdenum blue via related manipulatable building 523 blocks to aspects of materials science. Coord. Chem. Rev. 2003, 245, 153–166. [Google Scholar] [CrossRef]
- Gavrilova, N.; Myachina, M.; Harlamova, D.; Nazarov, V. Synthesis of Molybdenum Blue Dispersions 5 Using Ascorbic Acid as Reducing Agent. Colloids Interfaces 2020, 4, 24–38. [Google Scholar] [CrossRef]
- Nakamura, I.; Miras, H. Investigating the formation of “Molybdenum Blues” with gel electrophoresis an mass spectrometry. J. Am. Chem. Soc. 2015, 137, 6524–6530. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.; Chandel, S.; Mallick, A.; Sreejith, S.S.; Ghosh, N.; Roy, S. Studying the crystallization of polyoxometalates from colloidal softoxometalates. Cryst. Growth Des. 2018, 18, 4068–4075. [Google Scholar] [CrossRef]
- Grzhegorzhevskii, K.V.; Zelenovsky, P.S.; Koryakova, O.V.; Ostroushko, A.A. Thermal destruction of giant polyoxometalate nanoclusters: A vibrational spectroscopy study. Inorg. Chim. Acta 2019, 489, 287–300. [Google Scholar] [CrossRef]
- Müller, A.; Krickemeyer, E.; Bögge, H.; Schmidtmann, M.; Roy, S.; Berkle, A. Changeable pore sizes allowing effective and specific recognition by a molybdenum-oxide based “Nanosponge”: En route to sphere-surface and nanoporous-cluster chemistry. Angew. Chem. 2002, 114, 3756–3761. [Google Scholar] [CrossRef]
- Liu., Q.; Wang, X. Polyoxometalate clusters: Sub-nanometer building blocks for construction of advanced materials. Matter 2020, 2, 816–841. [Google Scholar] [CrossRef]
- Shishido, S.; Ozeki, T. The pH dependent nuclearity variation of {Mo154−x}-type polyoxomolybdates and tectonic effect on their aggregations. J. Am. Chem. Soc. 2008, 130, 10588–10595. [Google Scholar] [CrossRef]
- Zheng, Z.; Yuan, Z.; Li, S.; Li, H. Big to small: Ultrafine Mo2C particles derived from giant polyoxomolybdate clusters for hydrogen evolution reaction. Small 2019, 15, 1–11. [Google Scholar]
- Conte, M.; Liu, X.; Murphy, D.M.; Taylor, S.H.; Whiston, K.; Hutchings, G.J. Insights into the reaction mechanism of cyclohexane oxidation catalyzed by molybdenum blue nanorings. Catal. Lett. 2016, 146, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Lunk, H.-J.; Ziemer, B.; Salmen, M.; Heidemann, D. What is behind ‘tungsten blue oxides’? Int. J. Refract. Met. Hard Mat. 1993, 12, 17–26. [Google Scholar] [CrossRef]
- Scaffer, C.; Merca, A.; Bogge, H.; Todea, A.M.; Kistler, M.L.; Tianbo, L.; Thouvenot, R. Unprecedented and Differently Applicable Pentagonal Units in a Dynamic Library: A Keplerate of the Type {(W)W5}12{Mo2}30. Angew. Chem. Int. Ed. 2009, 48, 149–153. [Google Scholar] [CrossRef]
- Tytko, K.; Glemser, О. Isopolymolybdates and isopolytungstates. Adv. Inorg. Chem. Radiochem. 1976, 19, 239–315. [Google Scholar]
- Juesholt, M.; Christiansen, T.L.; Jensen, K.M. Mechanisms for tungsten oxide nanoparticle formation in solvothermal synthesis: From polyoxometalates to crystalline materials. J. Phys. Chem. C 2019, 123, 5110–5119. [Google Scholar] [CrossRef]
- Gavrilova, N.; Dyakonov, V.; Myachina, M.; Nazarov, V.; Skudin, V. Synthesis of Mo2C by thermal decomposition of molybdenum blue nanoparticles. Nanomaterials 2020, 10, 2053. [Google Scholar] [CrossRef]
- Gavrilova, N.; Myachina, M.; Dyakonov, V.; Nazarov, V.; Skudin, V. Synthesis of microporous Mo2C-W2C binary carbides by thermal decomposition of molybdenum–tungsten blues. Nanomaterials 2020, 10, 2428. [Google Scholar] [CrossRef] [PubMed]
- Azmat, S.; Jan, T.; Ilyas, S.Z.; Hassan, A.; Habib, I.; Mahmood, Q.; Mahmood, A. Solar light photocatalytic performance of WO3 nanostructures: Waste water treatment. Mater. Res. Express. 2018, 5, 115025–115049. [Google Scholar] [CrossRef]
- Guzman, G.; Yebka, B.; Livage, J.; Julien, C. Lithium intercalation studies in hydrated molybdenum oxides. Solid State Ion. 1996, 86, 407–413. [Google Scholar] [CrossRef]
- Bazhenova, M.D.; Gavrilova, N.N.; Nazarov, V.V. Some colloidochemical properties of molybdenum blues synthesized using glucose as a reducing agent. Colloid J. 2015, 77, 1–5. [Google Scholar] [CrossRef]
- Myachina, M.A.; Gavrilova, N.N.; Nazarov, V.V. Formation of molybdenum blue particles via the reduction of a molybdate solution with hydroquinone. Colloid J. 2019, 81, 541–546. [Google Scholar] [CrossRef]
- Gavrilova, N.N.; Nazarov, V.V.; Skudin, V.V. Synthesis of membrane catalysts based on Mo2C. Kinet. Catal. 2015, 56, 670–680. [Google Scholar] [CrossRef]
- Gavrilova, N.N.; Myachina, M.A.; Ardashev, D.V.; Nazarov, V.V.; Skudin, V.V. Sol–gel synthesis of membrane Мo2С/Al2O3 catalysts with different architectures and their catalytic activity in the reaction of carbon dioxide conversion of methane. Kinet. Catal. 2018, 59, 635–643. [Google Scholar] [CrossRef]
- Lyklema, J. Fundamentals of Interface and Colloid Science V. 5. Soft Colloids, 4th ed.; Elsevier: London, UK, 2005; pp. 3–38. [Google Scholar]
- Rusanov, A.I. Micellization in Surfactant Solutions, 1st ed.; Taylor & Francis: London, UK, 1998; pp. 150–250. [Google Scholar]
Band Position (cm−1) | Assignment | Reference Data |
---|---|---|
977 s 902 w | νMo=O | [37] |
737 s 634 m | ν(Mo–μ2O–Mo) or ν(Mo–μ3O–Mo) | [37] |
561 s | δ(O–Mo–O) | [37] |
1620 s | δH2O | [37] |
3400 s | ν(OH…H) | [37] |
1407 w | δNH4+ | [37] |
Sample | Predominant Particle Size, nm (DLS) | Stability Time, Days | Particle Concentration, % wt. (MoO3–WO3) |
---|---|---|---|
(Mo)/(W) = 95/5 | 4.0 | >30 | 1.0 |
(Mo)/(W) = 90/10 | 4.0 | >30 | 1.0 |
(Mo)/(W) = 80/20 | 4.0 | >30 | 1.0 |
(Mo)/(W) = 50/50 | 4.0 | >30 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myachina, M.; Gavrilova, N.; Poluboyarinova, K.; Nazarov, V. Molybdenum–Tungsten Blue Nanoparticles as a Precursor for Ultrafine Binary Carbides. Nanomaterials 2021, 11, 761. https://doi.org/10.3390/nano11030761
Myachina M, Gavrilova N, Poluboyarinova K, Nazarov V. Molybdenum–Tungsten Blue Nanoparticles as a Precursor for Ultrafine Binary Carbides. Nanomaterials. 2021; 11(3):761. https://doi.org/10.3390/nano11030761
Chicago/Turabian StyleMyachina, Maria, Natalia Gavrilova, Ksenia Poluboyarinova, and Victor Nazarov. 2021. "Molybdenum–Tungsten Blue Nanoparticles as a Precursor for Ultrafine Binary Carbides" Nanomaterials 11, no. 3: 761. https://doi.org/10.3390/nano11030761
APA StyleMyachina, M., Gavrilova, N., Poluboyarinova, K., & Nazarov, V. (2021). Molybdenum–Tungsten Blue Nanoparticles as a Precursor for Ultrafine Binary Carbides. Nanomaterials, 11(3), 761. https://doi.org/10.3390/nano11030761