Dark Field and Coherent Anti-Stokes Raman (DF-CARS) Imaging of Cell Uptake of Core-Shell, Magnetic-Plasmonic Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laser Microscopy Setup
2.2. Z-Scan Technique
2.3. Cell Culturing, Nanoparticle Viability Assays and Preparation for Imaging
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, M.; Novo, C.; Funston, A.; Wang, H.; Staleva, H.; Zou, S.; Mulvaney, P.; Xia, Y.; Hartland, G.V. Dark-field microscopy studies of single metal nanoparticles: Understanding the factors that influence the linewidth of the localized surface plasmon resonance. J. Mater. Chem. 2008, 18, 1949. [Google Scholar] [CrossRef]
- Zamora-Perez, P.; Tsoutsi, D.; Xu, R.; Rivera_Gil, P. Hyperspectral-Enhanced Dark Field Microscopy for Single and Collective Nanoparticle Characterization in Biological Environments. Materials 2018, 11, 243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wax, A.; Sokolov, K. Molecular imaging and darkfield microspectroscopy of live cells using gold plasmonic nanoparticles. Laser Photonics Rev. 2009, 3, 146–158. [Google Scholar] [CrossRef]
- Nishiyama, M.; Muto, E.; Inoue, Y.; Yanagida, T.; Higuchi, H. Substeps within the 8-nm step of the ATPase cycle of single kinesin molecules. Nat. Cell Biol. 2001, 3, 425–428. [Google Scholar] [CrossRef]
- Liu, M.; Chao, J.; Deng, S.; Wang, K.; Li, K.; Fan, C. Dark-field microscopy in imaging of plasmon resonant nanoparticles. Colloids Surf. B Biointerfaces 2014, 124, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Ueno, H.; Nishikawa, S.; Iino, R.; Tabata, K.V.; Sakakihara, S.; Yanagida, T.; Noji, H. Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution. Biophys. J. 2010, 98, 2014–2023. [Google Scholar] [CrossRef] [Green Version]
- Noda, N.; Kamimura, S. A new microscope optics for laser dark-field illumination applied to high precision two dimensional measurement of specimen displacement. Rev. Sci. Instrum. 2008, 79, 023704. [Google Scholar] [CrossRef]
- Kim, T.; Liang, J.; Zhu, L.; Wang, L.V. Picosecond-resolution phase-sensitive imaging of transparent objects in a single shot. Sci. Adv. 2020, 6, eaay6200. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.-Y.; Pasternack, R.M.; Boustany, N.N. Optical Scatter Imaging with a digital micromirror device. Opt. Express 2009, 17, 20401. [Google Scholar] [CrossRef]
- Zucker, R.M.; Massaro, E.J.; Sanders, K.M.; Degn, L.L.; Boyes, W.K. Detection of TiO2nanoparticles in cells by flow cytometry. Cytom. Part A 2010, 77, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Nan, X.; Sims, P.A.; Xie, X.S. Organelle tracking in a living cell with microsecond time resolution and nanometer spatial precision. Chem. Phys. Chem. 2008, 9, 707–712. [Google Scholar] [CrossRef]
- Herrmann, L.O.; Baumberg, J.J. Watching Single Nanoparticles Grow in Real Time through Supercontinuum Spectroscopy. Small 2013, 9, 3743–3747. [Google Scholar] [CrossRef] [PubMed]
- Steuwe, C.; Kaminski, C.F.; Baumberg, J.J.; Mahajan, S. Surface enhanced coherent anti-stokes raman scattering on nanostructured gold surfaces. Nano Lett. 2011, 11, 5339–5343. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhen, Y.R.; Neumann, O.; Day, J.K.; Nordlander, P.; Halas, N.J. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. Nat. Commun. 2014, 5, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Volkmer, A.; Cheng, J.X.; Xie, X.S. Vibrational imaging with high sensitivity via epidetected coherent anti-stokes raman scattering microscopy. Phys. Rev. Lett. 2001, 87, 023901. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Lu, F.; Zheng, W.; Huang, Z. Annular aperture-detected coherent anti-Stokes Raman scattering microscopy for high contrast vibrational imaging. Appl. Phys. Lett. 2010, 97, 083701. [Google Scholar] [CrossRef]
- Ichimura, T.; Hayazawa, N.; Hashimoto, M.; Inouye, Y.; Kawata, S. Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles. J. Raman Spectrosc. 2003, 34, 651–654. [Google Scholar] [CrossRef]
- Park, J.; Estrada, A.; Sharp, K.; Sang, K.; Schwartz, J.A.; Smith, D.K.; Coleman, C.; Donald Payne, J.; Korgel, B.A.; Dunn, A.K.; et al. Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells. In Plasmonics in Biology and Medicine VI; International Society for Optics and Photonics: Bellingham, WA, USA, 2009; Volume 7192. [Google Scholar] [CrossRef]
- Garrett, N.; Whiteman, M.; Moger, J. Imaging the uptake of gold nanoshells in live cells using plasmon resonance enhanced four wave mixing microscopy. Opt. Express 2011, 19, 17563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamidala, V.; Xing, G.; Ji, W. Surface plasmon enhanced third-order nonlinear optical effects in Ag-Fe3O4 nanocomposites. J. Phys. Chem. C 2010, 114, 22466–22471. [Google Scholar] [CrossRef]
- Brennan, G.; Thorat, N.D.; Pescio, M.; Bergamino, S.; Bauer, J.; Liu, N.; Tofail, S.A.M.; Silien, C. Spectral drifts in surface textured Fe3O4-Au, core–shell nanoparticles enhance spectra-selective photothermal heating and scatter imaging. Nanoscale 2020, 12, 12632–12638. [Google Scholar] [CrossRef]
- Salah, A.; Mansour, A.; Mohamed, M.B.; Azzouz, I.M.; Elnaby, S.; Badr, Y. Effects of nanoparticles size and concentration and laser power on nonlinear optical properties of Au and Au-CdSe nanocrystals. Appl. Surf. Sci. 2015, 353, 112–117. [Google Scholar] [CrossRef]
- Maehara, S.I.; Tanaka, S.; Shimada, M.; Shirabe, K.; Saito, Y.; Takahashi, K.; Maehara, Y. Selenoprotein P, as a predictor for evaluating gemcitabine resistance in human pancreatic cancer cells. Int. J. Cancer 2004, 112, 184–189. [Google Scholar] [CrossRef]
- Brennan, G.; Bergamino, S.; Pescio, M.; Tofail, S.A.M.; Silien, C. The effects of a varied gold shell thickness on iron oxide nanoparticle cores in magnetic manipulation, T1 and T2 MRI contrasting, and magnetic hyperthermia. Nanomaterials 2020, 10, 2424. [Google Scholar] [CrossRef] [PubMed]
- Bergen, J.M.; Von Recum, H.A.; Goodman, T.T.; Massey, A.P.; Pun, S.H. Gold nanoparticles as a versatile platform for optimizing physicochemical parameters for targeted drug delivery. Macromol. Biosci. 2006, 6, 506–516. [Google Scholar] [CrossRef] [PubMed]
- Weissleder, R. A clearer vision for in vivo imaging: Progress continues in the development of smaller, more penetrable probes for biological imaging. Nat. Biotechnol. 2001, 19, 316–317. [Google Scholar] [CrossRef]
- Lu, F.K.; Basu, S.; Igras, V.; Hoang, M.P.; Ji, M.; Fu, D.; Holtom, G.R.; Neel, V.A.; Freudiger, C.W.; Fisher, D.E.; et al. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy. Proc. Natl. Acad. Sci. USA 2015, 112, 11624–11629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheltikov, A.; L’Huillier, A.; Krausz, F. Nonlinear Optics. In Springer Handbook of Lasers and Optics; Springer: New York, NY, USA, 2007; pp. 157–248. [Google Scholar]
- Singh, C.P.; Bindra, K.S.; Bhalerao, G.M.; Oak, S.M. Investigation of optical limiting in iron oxide nanoparticles. Opt. Express 2008, 16, 8440. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Dena, O.; Mota-Santiago, P.; Tamayo-Rivera, L.; Crespo-Sosa, A.; Oliver, A.; Reyes-Esqueda, J.A. Size-and shape-dependent nonlinear optical response of au nanoparticles embedded in sapphire. Opt. Infobase Conf. Pap. 2013, 6, 2013–2014. [Google Scholar] [CrossRef]
- Ros, I.; Schiavuta, P.; Bello, V.; Mattei, G.; Bozio, R. Femtosecond nonlinear absorption of gold nanoshells at surface plasmon resonance. Phys. Chem. Chem. Phys. 2010, 12, 13692–13698. [Google Scholar] [CrossRef]
- Murzina, T.V.; Kolmychek, I.A.; Wouters, J.; Verbiest, T.; Aktsipetrov, O.A. Plasmon-assisted enhancement of third-order nonlinear optical effects in core (shell) nanoparticles. J. Opt. Soc. Am. B 2012, 29, 138. [Google Scholar] [CrossRef]
- Gordel, M.; Olesiak-Banska, J.; Kolkowski, R.; Matczyszyn, K.; Buckle, M.; Samoc, M. Shell-thickness-dependent nonlinear optical properties of colloidal gold nanoshells. J. Mater. Chem. C 2014, 2, 7239–7246. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Fan, Y.; Feng, Q.; Cui, F.Z. Biocompatibility and toxicity of nanoparticles and nanotubes. J. Nanomater. 2012. [Google Scholar] [CrossRef] [Green Version]
- Yildirimer, L.; Thanh, N.T.K.; Loizidou, M.; Seifalian, A.M. Toxicology and clinical potential of nanoparticles. Nano Today 2011, 6, 585–607. [Google Scholar] [CrossRef] [Green Version]
- Thorat, N.D.; Tofail, S.A.M.; Von Rechenberg, B.; Townley, H.; Brennan, G.; Silien, C.; Yadav, H.M.; Steffen, T.; Bauer, J. Physically stimulated nanotheranostics for next generation cancer therapy: Focus on magnetic and light stimulations. Appl. Phys. Rev. 2019, 6, 041306. [Google Scholar] [CrossRef]
- Espinosa, A.; Kolosnjaj-Tabi, J.; Abou-Hassan, A.; Plan Sangnier, A.; Curcio, A.; Silva, A.K.A.; Di Corato, R.; Neveu, S.; Pellegrino, T.; Liz-Marzán, L.M.; et al. Magnetic (Hyper)Thermia or Photothermia? Progressive Comparison of Iron Oxide and Gold Nanoparticles Heating in Water, in Cells, and In Vivo. Adv. Funct. Mater. 2018, 28. [Google Scholar] [CrossRef]
Target | Stretch | Wavenumbers | Pump Wavelength | CARS Wavelength |
---|---|---|---|---|
DNA | CH | 2967 cm−1 | 808.7 nm | 652.2 nm |
Protein | CH3 | 2926 cm−1 | 811.4 nm | 655.7 nm |
Lipid | CH2 | 2850 cm−1 | 816.4 nm | 662.3 nm |
Background | Off resonance | 2800 cm−1 | 819.8 nm | 666.7 nm |
Nanoparticle | β (10−10 m/W) | Im χ(3) (10−12 e.s.u.) |
---|---|---|
20.5±1.3 nm Fe3O4 (O) | 1.2 | 1.1 |
O + ≈3 nm Au seeds (Os) | −7.4 | −5.7 |
O + ≈4 nm thick Au shell (R1) | −4.9 | −3.9 |
O + ≈ 10.8 nm thick Au shell (R2) | −4.1 | −3.2 |
O + ≈41.6 nm thick Au shell (R3) | −2.1 | −1.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brennan, G.; Ryan, S.; Soulimane, T.; Tofail, S.A.M.; Silien, C. Dark Field and Coherent Anti-Stokes Raman (DF-CARS) Imaging of Cell Uptake of Core-Shell, Magnetic-Plasmonic Nanoparticles. Nanomaterials 2021, 11, 685. https://doi.org/10.3390/nano11030685
Brennan G, Ryan S, Soulimane T, Tofail SAM, Silien C. Dark Field and Coherent Anti-Stokes Raman (DF-CARS) Imaging of Cell Uptake of Core-Shell, Magnetic-Plasmonic Nanoparticles. Nanomaterials. 2021; 11(3):685. https://doi.org/10.3390/nano11030685
Chicago/Turabian StyleBrennan, Grace, Sally Ryan, Tewfik Soulimane, Syed A. M. Tofail, and Christophe Silien. 2021. "Dark Field and Coherent Anti-Stokes Raman (DF-CARS) Imaging of Cell Uptake of Core-Shell, Magnetic-Plasmonic Nanoparticles" Nanomaterials 11, no. 3: 685. https://doi.org/10.3390/nano11030685
APA StyleBrennan, G., Ryan, S., Soulimane, T., Tofail, S. A. M., & Silien, C. (2021). Dark Field and Coherent Anti-Stokes Raman (DF-CARS) Imaging of Cell Uptake of Core-Shell, Magnetic-Plasmonic Nanoparticles. Nanomaterials, 11(3), 685. https://doi.org/10.3390/nano11030685