High-Performance On-Chip Silicon Beamsplitter Based on Subwavelength Metamaterials for Enhanced Fabrication Tolerance
Abstract
:1. Introduction
2. Principle of Operation and Device Design
3. Simulation Results and Tolerance Analysis
4. Fabrication and Experimental Characterization
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, Q.; Kwon, J.; Glick, M.; Bahadori, M.; Carloni, L.P.; Bergman, K. Silicon Photonics Codesign for Deep Learning. Proc. IEEE 2020, 108, 1261–1282. [Google Scholar] [CrossRef]
- Ding, Y.; Llewellyn, D.; Faruque, I.; Paesani, S.; Bacco, D.; Rottwitt, K.; Laing, A.; Thompson, M.; Wang, J.; Oxenløwe, L.K. Integrated Quantum Photonics on Silicon Platform. In Optical Fiber Communication Conference (OFC) 2020; Optical Fiber Communication Conference, San Diego, California; OSA: Washington, DC, USA, 2020; W4C.6; ISBN 978-1-943580-71-2. [Google Scholar]
- Wang, J.; Yao, Z.; Lei, T.; Poon, A.W. Silicon coupled-resonator optical-waveguide-based biosensors using light-scattering pattern recognition with pixelized mode-field-intensity distributions. Sci. Rep. 2014, 4, 7528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poulton, C.V.; Yaacobi, A.; Cole, D.B.; Byrd, M.J.; Raval, M.; Vermeulen, D.; Watts, M.R. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt. Lett. 2017, 42, 4091–4094. [Google Scholar] [CrossRef] [PubMed]
- Kita, D.M.; Miranda, B.; Favela, D.; Bono, D.; Michon, J.; Lin, H.; Gu, T.; Hu, J. High-performance and scalable on-chip digital Fourier transform spectroscopy. Nat. Commun. 2018, 9, 4405. [Google Scholar] [CrossRef]
- Herrero-Bermello, A.; Li, J.; Khazaei, M.; Grinberg, Y.; Velasco, A.V.; Vachon, M.; Cheben, P.; Stankovic, L.; Stankovic, V.; Xu, D.-X.; et al. On-chip Fourier-transform spectrometers and machine learning: A new route to smart photonic sensors. Opt. Lett. 2019, 44, 5840–5843. [Google Scholar] [CrossRef]
- Velasco, A.V.; Cheben, P.; Bock, P.J.; Delâge, A.; Schmid, J.H.; Lapointe, J.; Janz, S.; Calvo, M.L.; Xu, D.-X.; Florjańczyk, M.; et al. High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides. Opt. Lett. 2013, 38, 706–708. [Google Scholar] [CrossRef]
- Hsieh, I.-W.; Chen, X.; Liu, X.; Dadap, J.I.; Panoiu, N.C.; Chou, C.-Y.; Xia, F.; Green, W.M.; Vlasov, Y.A.; Osgood, R.M. Supercontinuum generation in silicon photonic wires. Opt. Express 2007, 15, 15242–15249. [Google Scholar] [CrossRef]
- Kurdi, B.N.; Hall, D.G. Optical waveguides in oxygen-implanted buried-oxide silicon-on-insulator structures. Opt. Lett. 1988, 13, 175. [Google Scholar] [CrossRef] [PubMed]
- Bogaerts, W.; Duomon, P.; Wiaux, V.; Beckx, S.; Taillaert, D.; Luyssaert, B.; Van Campenhou, J.; Bienstman, P.; Van Thourhout, D. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightw. Technol. 2005, 23, 401–412. [Google Scholar]
- Chrostowski, L.; Hochberg, M. Silicon Photonics Design: From Devices to Systems; Cambridge University Press: Cambridge, UK, 2015; ISBN 9781316240892. [Google Scholar]
- González-Andrade, D.; Dias, A.; Wangüemert-Pérez, J.G.; Ortega-Moñux, A.; Molina-Fernández, Í.; Halir, R.; Cheben, P.; Velasco, A.V. Experimental demonstration of a broadband mode converter and multiplexer based on subwavelength grating waveguides. Opt. Laser Technol. 2020, 129, 106297. [Google Scholar] [CrossRef]
- Doylend, J.K.; Heck, M.J.R.; Bovington, J.T.; Peters, J.D.; Coldren, L.A.; Bowers, J.E. Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator. Opt. Express 2011, 19, 21595–21604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trinh, P.D.; Yegnanarayanan, S.; Jalali, B. Integrated optical directional couplers in silicon-on-insulator. Electron. Lett. 1995, 31, 2097–2098. [Google Scholar] [CrossRef]
- Cong, G.W.; Suzuki, K.; Kim, S.H.; Tanizawa, K.; Namiki, S.; Kawashima, H. Demonstration of a 3-dB directional coupler with enhanced robustness to gap variations for silicon wire waveguides. Opt. Express 2014, 22, 2051–2059. [Google Scholar] [CrossRef]
- Lu, Z.; Yun, H.; Wang, Y.; Chen, Z.; Zhang, F.; Jaeger, N.A.F.; Chrostowski, L. Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control. Opt. Express 2015, 23, 3795–3806. [Google Scholar] [CrossRef]
- Chen, X.; Liu, W.; Zhang, Y.; Shi, Y. Polarization-insensitive broadband 2 × 2 3 dB power splitter based on silicon-bent directional couplers. Opt. Lett. 2017, 42, 3738–3740. [Google Scholar] [CrossRef] [PubMed]
- González-Andrade, D.; Lafforgue, C.; Durán-Valdeiglesias, E.; Le Roux, X.; Berciano, M.; Cassan, E.; Marris-Morini, D.; Velasco, A.V.; Cheben, P.; Vivien, L.; et al. Polarization- and wavelength-agnostic nanophotonic beam splitter. Sci. Rep. 2019, 9, 3604. [Google Scholar] [CrossRef] [Green Version]
- Han, L.; Kuo, B.P.-P.; Alic, N.; Radic, S. Ultra-broadband multimode 3 dB optical power splitter using an adiabatic coupler and a Y-branch. Opt. Express 2018, 26, 14800–14809. [Google Scholar] [CrossRef]
- Chack, D.; Hassan, S. Design and experimental analysis of multimode interference-based optical splitter for on-chip optical interconnects. OE 2020, 59, 105102. [Google Scholar] [CrossRef]
- Li, X.; Xu, H.; Xiao, X.; Li, Z.; Yu, J.; Yu, Y. Compact and low-loss silicon power splitter based on inverse tapers. Opt. Lett. 2013, 38, 4220–4223. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Kim, I.K.; Seok, T.J. Low-Loss and Broadband Silicon Photonic 3-dB Power Splitter with Enhanced Coupling of Shallow-Etched Rib Waveguides. Appl. Sci. 2020, 10, 4507. [Google Scholar] [CrossRef]
- Frandsen, L.H.; Borel, P.I.; Zhuang, Y.X.; Harpøth, A.; Thorhauge, M.; Kristensen, M.; Bogaerts, W.; Dumon, P.; Baets, R.; Wiaux, V.; et al. Ultralow-loss 3-dB photonic crystal waveguide splitter. Opt. Lett. 2004, 29, 1623–1625. [Google Scholar] [CrossRef] [Green Version]
- Yajima, H. Dielectric thin--film optical branching waveguide. Appl. Phys. Lett. 1973, 22, 647–649. [Google Scholar] [CrossRef]
- Burns, W.; Milton, A. Mode conversion in planar-dielectric separating waveguides. IEEE J. Quantum Electron. 1975, 11, 32–39. [Google Scholar] [CrossRef]
- Voirin, G.; Rimet, R.; Chartier, G. Performances of an Ion Exchanged Star Coupler for Multimode Optical Communications. In Integrated Optics: Proceedings of the Third European Conference, Ecio’85, Berlin, Germany, May 6-8, 1985; Tamir, T., Nolting, H.-P.J., Ulrich, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 229–231. ISBN 978-3-662-13571-6. [Google Scholar]
- Wang, C.; Zhang, M.; Chen, X.; Bertrand, M.; Shams-Ansari, A.; Chandrasekhar, S.; Winzer, P.; Lončar, M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature 2018, 562, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Love, J.D.; Riesen, N. Single-, Few-, and Multimode Y-Junctions. J. Lightw. Technol. 2012, 30, 304–309. [Google Scholar] [CrossRef]
- Sun, C.; Zhao, J.; Wang, Z.; Du, L.; Huang, W. Broadband and high uniformity Y junction optical beam splitter with multimode tapered branch. Optik 2019, 180, 866–872. [Google Scholar] [CrossRef]
- Nedeljkovic, M.; Velasco, A.V.; Khokhar, A.Z.; Delage, A.; Cheben, P.; Mashanovich, G.Z. Mid-Infrared Silicon-on-Insulator Fourier-Transform Spectrometer Chip. IEEE Photon. Technol. Lett. 2016, 28, 528–531. [Google Scholar] [CrossRef] [Green Version]
- Linh, H.D.T.; Dung, T.C.; Tanizawa, K.; Thang, D.D.; Hung, N.T. Arbitrary TE0/TE1/TE2/TE3 Mode Converter Using 1 × 4 Y-Junction and 4 × 4 MMI Couplers. IEEE J. Sel. Top. Quant. Electron. 2020, 26. [Google Scholar] [CrossRef]
- Tran, A.T.; Truong, D.C.; Nguyen, H.T.; van Vu, Y. A new simulation design of three-mode division (de)multiplexer based on a trident coupler and two cascaded 3 × 3 MMI silicon waveguides. Opt. Quant. Electron. 2018, 50, 426. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, S.; Lim, A.E.-J.; Lo, G.-Q.; Galland, C.; Baehr-Jones, T.; Hochberg, M. A compact and low loss Y-junction for submicron silicon waveguide. Opt. Express 2013, 21, 1310–1316. [Google Scholar] [CrossRef]
- Ito, T.; Okazaki, S. Pushing the limits of lithography. Nature 2000, 406, 1027–1031. [Google Scholar] [CrossRef]
- Cheben, P.; Xu, D.-X.; Janz, S.; Densmore, A. Subwavelength waveguide grating for mode conversion and light coupling in integrated optics. Opt. Express 2006, 14, 4695–4702. [Google Scholar] [CrossRef]
- Cheben, P.; Janz, S.; Xu, D.-X.; Lamontagne, B.; Delage, A.; Tanev, S. A broad-band waveguide grating coupler with a subwavelength grating mirror. IEEE Photon. Technol. Lett. 2006, 18, 13–15. [Google Scholar] [CrossRef]
- Schmid, J.H.; Cheben, P.; Janz, S.; Lapointe, J.; Post, E.; Xu, D.-X. Gradient-index antireflective subwavelength structures for planar waveguide facets. Opt. Lett. 2007, 32, 1794–1796. [Google Scholar] [CrossRef] [PubMed]
- Schmid, J.H.; Cheben, P.; Janz, S.; Lapointe, J.; Post, E.; Delâge, A.; Densmore, A.; Lamontagne, B.; Waldron, P.; Xu, D.-X. Subwavelength Grating Structures in Silicon-on-Insulator Waveguides. Adv. Opt. Technol. 2008, 2008, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bock, P.J.; Cheben, P.; Schmid, J.H.; Delâge, A.; Xu, D.-X.; Janz, S.; Hall, T.J. Sub-wavelength grating mode transformers in silicon slab waveguides. Opt. Express 2009, 17, 19120–19133. [Google Scholar] [CrossRef] [PubMed]
- Schmid, J.H.; Cheben, P.; Bock, P.J.; Halir, R.; Lapointe, J.; Janz, S.; Delage, A.; Densmore, A.; Fedeli, J.-M.; Hall, T.J.; et al. Refractive Index Engineering With Subwavelength Gratings in Silicon Microphotonic Waveguides. IEEE Photonics J. 2011, 3, 597–607. [Google Scholar] [CrossRef]
- Cheben, P.; Halir, R.; Schmid, J.H.; Atwater, H.A.; Smith, D.R. Subwavelength integrated photonics. Nature 2018, 560, 565–572. [Google Scholar] [CrossRef]
- Halir, R.; Ortega-Monux, A.; Benedikovic, D.; Mashanovich, G.Z.; Wanguemert-Perez, J.G.; Schmid, J.H.; Molina-Fernandez, I.; Cheben, P. Subwavelength-Grating Metamaterial Structures for Silicon Photonic Devices. Proc. IEEE 2018, 106, 2144–2157. [Google Scholar] [CrossRef] [Green Version]
- Bock, P.J.; Cheben, P.; Schmid, J.H.; Lapointe, J.; Delâge, A.; Janz, S.; Aers, G.C.; Xu, D.-X.; Densmore, A.; Hall, T.J. Subwavelength grating periodic structures in silicon-on-insulator: A new type of microphotonic waveguide. Opt. Express 2010, 18, 20251–20262. [Google Scholar] [CrossRef] [Green Version]
- Bock, P.J.; Cheben, P.; Velasco, A.V.; Schmid, J.H.; Delâge, A.; Florjańczyk, M.; Lapointe, J.; Xu, D.-X.; Vachon, M.; Janz, S.; et al. Subwavelength grating Fourier-transform interferometer array in silicon-on-insulator. Laser Photon. Rev. 2013, 7, L67–L70. [Google Scholar] [CrossRef]
- Ye, C.; Dai, D. Ultra-Compact Broadband 2 × 2 3 dB Power Splitter Using a Subwavelength-Grating-Assisted Asymmetric Directional Coupler. J. Lightw. Technol. 2020, 38, 2370–2375. [Google Scholar] [CrossRef]
- Yang, N.; Xiao, J. A compact silicon-based polarization-independent power splitter using a three-guide directional coupler with subwavelength gratings. Opt. Commun. 2020, 459, 125095. [Google Scholar] [CrossRef]
- Xie, H.; Zheng, J.; Xu, P.; Yao, J.; Whitehead, J.; Majumdar, A. Ultra-Compact Subwavelength-Grating-Assisted Polarization-Independent Directional Coupler. IEEE Photonics Technol. Lett. 2019, 31, 1538–1541. [Google Scholar] [CrossRef]
- Ortega-Moñux, A.; Alonso-Ramos, C.; Maese-Novo, A.; Halir, R.; Zavargo-Peche, L.; Pérez-Galacho, D.; Molina-Fernández, I.; Wangüemert-Pérez, J.G.; Cheben, P.; Schmid, J.H.; et al. An ultra-compact multimode interference coupler with a subwavelength grating slot. Laser Photonics Rev. 2013, 7, L12–L15. [Google Scholar] [CrossRef]
- Halir, R.; Cheben, P.; Luque-González, J.M.; Sarmiento-Merenguel, J.D.; Schmid, J.H.; Wangüemert-Pérez, G.; Xu, D.-X.; Wang, S.; Ortega-Moñux, A.; Molina-Fernández, Í. Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial. Laser Photonics Rev. 2016, 10, 1039–1046. [Google Scholar] [CrossRef]
- Ni, B.; Xiao, J. Ultracompact and broadband silicon-based TE-pass 1 × 2 power splitter using subwavelength grating couplers and hybrid plasmonic gratings. Opt. Express 2018, 26, 33942–33955. [Google Scholar] [CrossRef]
- Vlasov, Y.; McNab, S. Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 2004, 12, 1622–1631. [Google Scholar] [CrossRef]
- Lumerical Solutions. 2003. Available online: https://www.lumerical.com/products/fdtd/ (accessed on 14 May 2021).
- Cheben, P.; Bock, P.J.; Schmid, J.H.; Lapointe, J.; Janz, S.; Xu, D.-X.; Densmore, A.; Delâge, A.; Lamontagne, B.; Hall, T.J. Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers. Opt. Lett. 2010, 35, 2526–2528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheben, P.; Schmid, J.H.; Wang, S.; Xu, D.-X.; Vachon, M.; Janz, S.; Lapointe, J.; Painchaud, Y.; Picard, M.-J. Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency. Opt. Express 2015, 23, 22553–22563. [Google Scholar] [CrossRef]
Design | Parameter | Symbol | Value (μm) |
---|---|---|---|
SWG and conventional Y-junctions | Arm width Arm final separation Arm length | W Ha LB | 0.5 1.5 12.3 |
Conventional Y-junction | Stem waveguide length Taper length Output section length | LS LT LO | 13 4 9 |
SWG Y-junction | Input strip width Input strip length Input SWG taper Output SWG taper Central SWG section Output strip length | WS LI LTI LTO LC LE | 1.2 2 10 6 13 3 |
Ref | Structure | Bandwidth (nm) | ELTE0 (dB) | MFS (nm) | Length (μm) |
---|---|---|---|---|---|
[16] | Directional coupler | 88 | <1.0 | 200 | 31.4 |
[17] | Bent directional coupler | 80 | <1.0 | 110 | 50 |
[18] | Slotted Y-junction | 390 | <1.0 | 100 | 200 |
[20] | MMI coupler | 60 | <1.0 | 500 | 27 |
[21] | Inverse tapers | 40 | <4.0 * | 100 | 16.1 |
[22] | Adiabatic tapers | 100 | <0.6 | 200 | 40 |
[29] | Tapered Y-junction | 100 | <0.3 | 0 | 30 |
[33] | PSO Y-junction | 80 | <1.0 | 200 | 2 |
[47] | SWG directional coupler | 65 | <1.0 | 90 | 4.5 |
[45] | SWG directional coupler | 200 | <1.0 | 110 * | 17.3 |
[49] | SWG MMI | 325 | <1.0 | 95 * | 25.4 |
This work | SWG Y-junction | 270 | <0.4 | 50 | 41.3 |
This work | SWG Y-junction | 270 | <0.7 | 100 | 41.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández de Cabo, R.; González-Andrade, D.; Cheben, P.; Velasco, A.V. High-Performance On-Chip Silicon Beamsplitter Based on Subwavelength Metamaterials for Enhanced Fabrication Tolerance. Nanomaterials 2021, 11, 1304. https://doi.org/10.3390/nano11051304
Fernández de Cabo R, González-Andrade D, Cheben P, Velasco AV. High-Performance On-Chip Silicon Beamsplitter Based on Subwavelength Metamaterials for Enhanced Fabrication Tolerance. Nanomaterials. 2021; 11(5):1304. https://doi.org/10.3390/nano11051304
Chicago/Turabian StyleFernández de Cabo, Raquel, David González-Andrade, Pavel Cheben, and Aitor V. Velasco. 2021. "High-Performance On-Chip Silicon Beamsplitter Based on Subwavelength Metamaterials for Enhanced Fabrication Tolerance" Nanomaterials 11, no. 5: 1304. https://doi.org/10.3390/nano11051304
APA StyleFernández de Cabo, R., González-Andrade, D., Cheben, P., & Velasco, A. V. (2021). High-Performance On-Chip Silicon Beamsplitter Based on Subwavelength Metamaterials for Enhanced Fabrication Tolerance. Nanomaterials, 11(5), 1304. https://doi.org/10.3390/nano11051304