High-Efficiency Spin-Related Vortex Metalenses
Abstract
:1. Introduction
2. Theoretical Analysis and Design Methodologies
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, D.; Fan, P.; Hasman, E.; Brongersma, M.L. Dielectric gradient metasurface optical elements. Science 2014, 345, 298. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Xu, H.; Guo, K.; Shen, F.; Zhou, H.; Zhou, Q.; Gao, J.; Yin, Z. High-efficiency visible transmitting polarizations devices based on the GaN metasurface. Nanomaterials 2018, 8, 333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arbabi, A.; Horie, Y.; Bagheri, M.; Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 2015, 10, 937. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhao, Z.; Guo, C.; Shen, F.; Sun, J.; Guo, Z. Irrotational nanobricks based high-efficiency polarization-independence metasurfaces. IEEE Photonics J. 2020, 12, 4501108. [Google Scholar] [CrossRef]
- Fan, Q.; Wang, D.; Huo, P.; Zhang, Z.; Liang, Y.; Xu, T. Autofocusing airy beams generated by all-dielectric metasurface for visible light. Opt. Express 2017, 25, 9285. [Google Scholar] [CrossRef]
- Kang, Q.; Li, D.; Guo, K.; Gao, J.; Guo, Z. Tunable Thermal Camouflage Based on GST Plasmonic Metamaterial. Nanomaterials 2021, 11, 260. [Google Scholar] [CrossRef]
- Jahani, S.; Jacob, Z. All-dielectric metamaterials. Nat. Nanotechnol. 2016, 11, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Kamali, S.; Arbabi, E.; Arbabi, A.; Faraon, A. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics 2018, 7, 1041–1068. [Google Scholar] [CrossRef]
- Yu, N.F.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.-P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.F.; Zhu, A.Y.; Paniagua-Domínguez, R.; Fu, Y.H.; Luk’yanchuk, B.; Kuznetsov, A.I. High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser Photonics Rev. 2015, 9, 412. [Google Scholar] [CrossRef]
- Aieta, F.; Genevet, P.; Kats, M.; Yu, N.; Blanchard, R.; Gaburro, Z.; Capasso, F. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 2012, 12, 4932–4936. [Google Scholar] [CrossRef] [PubMed]
- Arbabi, A.; Horie, Y.; Ball, A.J.; Bagheri, M.; Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmission arrays. Nat. Commun. 2015, 6, 7069. [Google Scholar] [CrossRef] [PubMed]
- Khorasaninejad, M.; Zhu, A.; Roques-Carmes, C.; Chen, W.; Oh, J.; Mishra, I.; Devlin, R.; Capasso, F. Polarization-insensitive Metalenses at Visible Wavelengths. Nano Lett. 2016, 16, 7229. [Google Scholar] [CrossRef]
- Wang, W.; Guo, Z.Y.; Zhou, K.Y.; Sun, Y.; Shen, F.; Li, Y.; Qu, S.L.; Liu, S.T. Polarization-independent longitudinal multifocusing metalens. Opt. Express 2015, 23, 29855–29866. [Google Scholar] [CrossRef]
- Zhou, H.P.; Chen, L.; Shen, F.; Guo, K.; Guo, Z.Y. A broadband achromatic metalens in mid-infrared region. Phys. Rev. Appl. 2019, 11, 024066. [Google Scholar] [CrossRef]
- Wang, W.; Kang, C.; Liu, X.; Qu, S. Spin-selected and spin-independent dielectric metalenses. J. Opt. 2018, 20, 095102. [Google Scholar] [CrossRef]
- Ni, X.; Kildishev, A.V.; Shalaev, V.M. Metasurface holograms for visible light. Nat. Commun. 2013, 4, 2807. [Google Scholar] [CrossRef]
- Huang, L.L.; Chen, X.Z.; Mühlenbernd, H.; Zhang, H.; Chen, S.M.; Bai, B.F.; Tan, Q.F.; Jin, G.F.; Cheah, K.W.; Qiu, C.W.; et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 2013, 4, 2808. [Google Scholar] [CrossRef] [Green Version]
- Zhou, F.; Liu, Y.; Cai, W.P. Plasmonic holographic imaging with V-shaped nanoantenna array. Opt. Express 2013, 21, 4348. [Google Scholar] [CrossRef]
- Wen, D.D.; Yue, F.Y.; Li, G.X.; Zheng, G.X.; Chan, K.L. Helicity multiplexed broadband metasurface holograms. Nat. Commun. 2015, 6, 8241. [Google Scholar] [CrossRef] [PubMed]
- He, J.W.; Wang, X.K.; Hu, D.; Ye, J.S.; Feng, S.F.; Kan, Q.; Zhang, A.Y. Generation and evolution of the terahertz vortex beam. Opt. Express 2013, 21, 20230–20239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karimi, E.; Schulz, S.A.; De Leon, I.; Qassim, H.; Upham, J.; Boyd, R.W. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl. 2014, 3, e167. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, F.; Leon, I.D.; Schulz, S.A.; Upham, J.; Karimi, E.; Boyd, R.W. Optical spin-to-orbital angular momentum conversion in ultra-thin metasurfaces with arbitrary topological charges. Appl. Phys. Lett. 2014, 105, 101905. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Li, Y.; Guo, Z.Y.; Li, R.Z.; Zhang, J.R.; Zhang, A.J.; Qu, S.L. Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation. J. Opt. 2015, 17, 045102. [Google Scholar] [CrossRef]
- Guo, Z.; Zhu, L.; Guo, K.; Shen, F.; Yin, Z. High-order dielectric metasurfaces for high-efficiency polarization beam splitters and optical vortex generators. Nanoscale Res. Lett. 2017, 12, 512. [Google Scholar] [CrossRef] [PubMed]
- Chu, P.X.; Chen, J.X.; Xiong, Z.G.; Yi, Z. Controllable frequency conversion in the coupled time-modulated cavities with phase delay. Opt. Commun. 2020, 476, 126338. [Google Scholar] [CrossRef]
- Yu, P.; Yang, H.; Chen, X.; Yi, Z.; Yao, W.; Chen, J.; Yi, Y.; Wu, P. Ultra-wideband solar absorber based on refractory titanium metal. Renew. Energy 2020, 158, 227–235. [Google Scholar] [CrossRef]
- Kenney, M.; Li, S.; Zhang, X.; Su, X.; Kim, T.T.; Wang, D.; Wu, D.; Ouyang, C.; Han, J.; Zhang, W.; et al. Pancharatnam-Berry phase induced spin-selective transmission in herringbone dielectric metamaterials. Adv. Mater. 2016, 28, 9567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.; Liu, Z.; Hu, S.; Jin, A.Z.; Yang, H.; Zhang, S.; Li, J.; Gu, C. Spin-selective transmission in chiral folded metasurfaces. Nano Lett. 2019, 19, 3432. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.; Cheng, H.; Liu, J.; Chen, S.; Tian, J. Simultaneous generation of high-efficiency broadband asymmetric anomalous refraction and reflection waves with few-layer anisotropic metasurface. Sci. Rep. 2016, 6, 35485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Z.; Li, Y.; Li, Y.; Gong, Y.; Maier, S.A.; Hong, M. All-dielectric planar chiral metasurface with gradient geometric phase. Opt. Express 2018, 26, 6067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khorasaninejad, M.; Chen, W.T.; Zhu, A.Y.; Oh, J.; Devlin, R.C.; Rousso, D.; Capasso, F. Multispectral Chiral Imaging with a Metalens. Nano Lett. 2016, 16, 4595. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Jiang, Q.; Kang, Y.; Zhu, X.; Fang, Z. Enhanced optical performance of multifocal metalens with conic shapes. Light: Sci. Appl. 2017, 6, 17071. [Google Scholar] [CrossRef] [Green Version]
- Jin, L.; Dong, Z.; Mei, S.; Yu, Y.F.; Wei, Z.; Pan, Z.; Rezaei, S.D.; Li, X.; Kuznetsov, A.I.; Kivshar, Y.S.; et al. Noninterleaved metasurface for (26-1) spin-and wavelength-encoded holograms. Nano Lett. 2018, 18, 8016. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.; Beijersbergen, M.; Spreeuw, R.; Woerdman, J. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 1992, 45, 8185–8189. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Dedo, M.; Guo, K.; Zhou, K.; Shen, F.; Sun, Y.; Liu, S.; Guo, Z. Efficient recognition of the propagated orbital angular momentum modes in turbulences with the convolutional neural network. IEEE Photonics J. 2019, 11, 7903614. [Google Scholar] [CrossRef]
- Dedo, M.; Wang, Z.; Guo, K.; Guo, Z. OAM mode recognition based on joint scheme of combining the Gerchberg-Saxton (GS) algorithm and convolutional neural network (CNN). Opt. Commun. 2020, 456, 124696. [Google Scholar] [CrossRef]
- D’Ambrosio, V.; Nagali, E.; Walborn, S.P.; Aolita, L.; Slussarenko, S.; Marrucci, L.; Sciarrino, F. Complete experimental toolbox for alignment-free quantum communication. Nat. Commun. 2012, 3, 961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, L.; Guo, Z.; Xu, Q.; Zhang, J.; Zhang, A.; Wang, W.; Liu, Y.; Li, Y.; Wang, X.; Qu, S. Calculating the Torque of the Optical Vortex Tweezer to the ellipsoidal Microparticles. Opt. Commun. 2015, 354, 34–39. [Google Scholar]
- Huang, L.; Song, X.; Reineke, B.; Li, T.; Li, X.; Liu, J.; Zhang, S.; Wang, Y.; Zentgraf, T. Volumetric generation of optical vortices with metasurfaces. ACS Photonics 2017, 4, 338. [Google Scholar] [CrossRef] [Green Version]
- Devlin, R.C.; Ambrosio, A.; Rubin, N.A.; Mueller, J.P.B.; Capasso, F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 2017, 358, 896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Gao, J.; Yang, X. Spatial variation of vector vortex beams with plasmonic metasurfaces. Sci. Rep. 2019, 9, 9969. [Google Scholar] [CrossRef] [PubMed]
- Harkai, S.; Murray, B.S.; Rosenblatt, C.; Kralj, S. Electric field driven reconfigurable multistable topological defect patterns. Phys. Rev. Res. 2020, 2, 013176. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Guo, C.; Zhao, Z.; Li, J.; Shi, Y. Polarization multiplexing and bifocal optical vortex metalens. Results Phys. 2020, 17, 103033. [Google Scholar] [CrossRef]
- Zhang, K.; Yuan, Y.; Zhang, D.; Ding, X.; Ratni, B.; Burokur, S.; Lu, M.; Tang, K.; Wu, Q. Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region. Opt. Express 2018, 1351, 310059–311360. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Ding, F. High-efficiency focused optical vortex generation with geometric gap-surface plasmon metalenses. Appl. Phys. Lett. 2020, 117, 011103. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, J.; Yuan, H.; Wang, Z.; Deng, Y.; Zhang, Z.; Lin, G.; Yang, J. A vortex-focused beam metalens array in the visible light range based on computer-generated holography. Results Phys. 2021, 104211. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, Q.; Liu, Y.S.; Zang, X.F. Spin-independent metalens for helicity—Multiplexing of converged vortices and cylindrical vector beams. Opt. Lett. 2020, 45, 5941–5944. [Google Scholar] [CrossRef] [PubMed]
- Pierce, D.T.; Spicer, W.E. Electronic Structure of Amorphous Si from Photoemission and Optical Studies. Phys. Rev. B 1972, 5, 3017. [Google Scholar] [CrossRef]
- Yu, N.; Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 2014, 13, 139. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Zhao, R.; Chang, S.; Li, J.; Shi, Y.; Liu, X.; Sun, J.; Kang, Q.; Guo, K.; Guo, Z. High-Efficiency Spin-Related Vortex Metalenses. Nanomaterials 2021, 11, 1485. https://doi.org/10.3390/nano11061485
Wang W, Zhao R, Chang S, Li J, Shi Y, Liu X, Sun J, Kang Q, Guo K, Guo Z. High-Efficiency Spin-Related Vortex Metalenses. Nanomaterials. 2021; 11(6):1485. https://doi.org/10.3390/nano11061485
Chicago/Turabian StyleWang, Wei, Ruikang Zhao, Shilong Chang, Jing Li, Yan Shi, Xiangmin Liu, Jinghua Sun, Qianlong Kang, Kai Guo, and Zhongyi Guo. 2021. "High-Efficiency Spin-Related Vortex Metalenses" Nanomaterials 11, no. 6: 1485. https://doi.org/10.3390/nano11061485
APA StyleWang, W., Zhao, R., Chang, S., Li, J., Shi, Y., Liu, X., Sun, J., Kang, Q., Guo, K., & Guo, Z. (2021). High-Efficiency Spin-Related Vortex Metalenses. Nanomaterials, 11(6), 1485. https://doi.org/10.3390/nano11061485