A Review on Terahertz Technologies Accelerated by Silicon Photonics
Abstract
:1. Introduction
2. Generating THz Waves through Photonic Approaches
2.1. Generation of Broadband THz Pulses
2.2. Generation of THz Continuous Waves
3. Detecting THz-Waves through Photonic Approaches
3.1. Detection of Broadband THz Pulses
3.2. Detection of THz Continuous Waves
4. Silicon Photonics for THz Techniques
4.1. Silicon Photonics for THz Generation
4.1.1. CW Lasers
4.1.2. Mode-Locked Lasers
4.1.3. High-Speed PDs and Photomixers
4.2. Si Photonics for THz Detection
4.3. THz Phase Modulation
4.4. THz Intensity Modulation
4.5. Photonics-Inspired THz Silicon Components
5. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, Y.-S. Principles of Terahertz Science and Technology; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar]
- Tonouchi, M. Cutting-edge terahertz technology. Nat. Photonics 2007, 1, 97–105. [Google Scholar] [CrossRef]
- Sengupta, K.; Nagatsuma, T.; Mittleman, D.M. Terahertz integrated electronic and hybrid electronic–photonic systems. Nat. Electron. 2018, 1, 622–635. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Ducournau, G.; Renaud, C.C. Advances in terahertz communications accelerated by photonics. Nat. Photonics 2016, 10, 371–379. [Google Scholar] [CrossRef]
- Sartorius, B.; Stanze, D.; Göbel, T.; Schmidt, D.; Schell, M. Continuous wave terahertz systems based on 1.5 μm telecom technologies. J. Infrared Millim. Terahertz Waves 2011, 33, 405–417. [Google Scholar] [CrossRef] [Green Version]
- Bogaerts, W.; Chrostowski, L. Silicon photonics circuit design: Methods, tools and challenges. Laser Photonics Rev. 2018, 12, 1700237. [Google Scholar] [CrossRef]
- Thomson, D.; Zilkie, A.; Bowers, J.E.; Komljenovic, T.; Reed, G.T.; Vivien, L.; Marris-Morini, D.; Cassan, E.; Virot, L.; Fédéli, J.M. Roadmap on silicon photonics. J. Opt. 2016, 18, 7. [Google Scholar] [CrossRef]
- Lewis, R.A. A review of terahertz sources. J. Phys. D Appl. Phys. 2014, 47, 374001. [Google Scholar] [CrossRef]
- Safian, R.; Ghazi, G.; Mohammadian, N. Review of photomixing continuous-wave terahertz systems and current application trends in terahertz domain. Opt. Eng. 2019, 58, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Uhd, P.; Jepsen, R.H.; Jacobsen, S.; Keiding, R. Generation and detection of terahertz pulses from biased semiconductor antennas. Opt. Soc. Am. B 1996, 13, 2424–2436. [Google Scholar]
- Burford, N.M.; El-Shenawee, M.O. Review of terahertz photoconductive antenna technology. Opt. Eng. 2017, 56, 010901. [Google Scholar] [CrossRef]
- Rice, A.; Jin, Y.; Ma, X.F.; Zhang, X.-C. Terahertz optical rectification from zinc-blende crystals. Appl. Phys. Lett. 1994, 64, 1324. [Google Scholar] [CrossRef]
- Zhang, X.C.; Ma, X.F.; Jin, Y.; Lu, T.M.; Boden, E.P.; Phelps, P.D.; Stewart, K.R.; Yakymyshyn, C.P. Terahertz optical rectification from a nonlinear organic crystal. Appl. Phys. Lett. 1992, 61, 3080–3082. [Google Scholar] [CrossRef]
- Ding, Y.J. Progress in terahertz sources based on difference-frequency generation [Invited]. J. Opt. Soc. Am. B 2014, 31, 2696–2711. [Google Scholar] [CrossRef]
- Sowade, R.; Breunig, I.; Mayorga, I.C.; Kiessling, J.; Tulea, C.; Dierolf, V.; Buse, K. Continuous-wave optical parametric terahertz source. Opt. Express 2009, 17, 22303–22310. [Google Scholar] [CrossRef]
- Nuss, M.C.; Orenstein, J. Terahertz time-domain spectroscopy. In Millimeter and Submillimeter Wave Spectroscopy of Solids. Topics in Applied Physics; Grüner, G., Ed.; Springer: Berlin/Heidelberg, Germany, 1998; Volume 74. [Google Scholar]
- Mourou, G.; Stancampiano, C.V.; Antonetti, A.; Orszag, A. Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch. Appl. Phys. Lett. 1981, 39, 295–296. [Google Scholar] [CrossRef]
- Han, P.Y.; Zhang, X.C. Free-space coherent broadband terahertz time-domain spectroscopy. Meas. Sci. Technol 2001, 12, 1747–1756. [Google Scholar] [CrossRef]
- Kübler, C.; Huber, R.; Leitenstorfer, A. Ultrabroadband terahertz pulses: Generation and field-resolved detection. Semicond. Sci. Technol. 2005, 20, S128–S133. [Google Scholar] [CrossRef]
- Fattinger, C.; Grischkowsky, D. Point source terahertz optics. Appl. Phys. Lett. 1998, 53, 1480–1482. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Liao, D.; Gao, X.; Zhao, J.; Zhu, Y.; Zhuang, S. Terahertz time-domain spectroscopy and micro-cavity components for probing samples: A review. Front. Inf. Technol. Electron. Eng. 2019, 20, 591–607. [Google Scholar] [CrossRef]
- Shen, Y.C.; Upadhy, P.C.; Linfield, E.H.; Beere, H.E. Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters. Appl. Phys. Lett. 2003, 83, 3117. [Google Scholar] [CrossRef] [Green Version]
- Nagai, M.; Tanaka, K.; Ohtake, H.; Bessho, T.; Sugiura, T.; Hirosumi, T.; Yoshida, M. Generation and detection of terahertz radiation by electro-optical process in gaas using 1.56 μm fiber laser pulses. Appl. Phys. Lett. 2004, 85, 3974–3976. [Google Scholar] [CrossRef]
- Nahata, A.; Weling, A.S.; Heinz, T.F. A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling. Appl. Phys. Lett. 1996, 69, 2321–2323. [Google Scholar] [CrossRef] [Green Version]
- L’huillier, J.A.; Torosyan, G.; Theuer, M.; Theuer, M.; Avetisyan, Y.; Beigang, R. Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate—Part 1: Theory. Appl. Phys. B 2007, 86, 185–196. [Google Scholar] [CrossRef]
- L’Huillier, J.A.; Torosyan, G.; Theuer, M.; Rau, C.; Avetisyan, Y.; Beigang, R. Generation of thz radiation using bulk, periodically and aperiodically poled lithium niobate—Part 2: Experiments. Appl. Phys. B 2007, 86, 197–208. [Google Scholar] [CrossRef]
- Neu, J.; Schmuttenmaer, C.A. Tutorial: An introduction to terahertz time domain spectroscopy (THz-TDS). J. Appl. Phys. 2018, 124, 231101. [Google Scholar] [CrossRef] [Green Version]
- Eisele, H. 480GHz oscillator with an InP Gunn device. Electron. Lett. 2010, 46, 422–423. [Google Scholar] [CrossRef]
- Ino, M.; Ishibashi, T.; Ohmori, M.C.W. oscillation with p+-p-n+ silicon IMPATT diodes in 200 GHz and 300 GHz bands. Electron. Lett. 2007, 12, 148–149. [Google Scholar] [CrossRef]
- Asada, M.; Suzuki, S.; Kishimoto, N. Resonant Tunneling Diodes for Sub-Terahertz and Terahertz Oscillators. Jpn. J. Appl. Phys. 2008, 47, 4375. [Google Scholar] [CrossRef]
- Chattopadhyay, G. Technology, Capabilities, and Performance of Low Power Terahertz Sources. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 33–53. [Google Scholar] [CrossRef]
- Young, D.T.; Irvin, J.C. Millimeter frequency conversion using Au-n-type GaAs Schottky barrier epitaxial diodes with a novel contacting technique. Proc. IEEE Inst. Electr. Electron. Eng. 1965, 53, 2130–2131. [Google Scholar] [CrossRef]
- Chattopadhyay, G.; Schlecht, E.; Gill, J.; Martin, S.; Maestrini, A.; Pukala, D.; Maiwald, F.; Mehdi, I. A broadband 800 GHz Schottky balanced doubler. IEEE Microw Wirel Compon Lett 2002, 12, 117–118. [Google Scholar] [CrossRef]
- Kozlov, G.; Volkov, A. Coherent source submillimeter wave spectroscopy. Top. Appl. Phys. 1998, 74, 51–109. [Google Scholar]
- Gorshunov, B.; Volkov, A.; Spektor, I.; Prokhorov, A.; Mukhin, A.; Dressel, M.; Uchida, S.; Loidl, A. Terahertz bwo-spectrosopy. J. Infrared Millim. Terahertz Waves 2005, 26, 1217–1240. [Google Scholar] [CrossRef]
- Komandin, G.A.; Chuchupal, S.V.; Lebedev, S.P.; Goncharov, Y.G. BWO Generators for Terahertz Dielectric Measurements. IEEE Trans. Terahertz Sci. Technol. 2013, 3, 440–444. [Google Scholar] [CrossRef]
- Tan, P.; Huang, J.; Liu, K.F.; Fan, X.M. Terahertz radiation sources based on free electron lasers and their applications. Sci. China Inf. Sci. 2021, 55, 1–15. [Google Scholar] [CrossRef]
- Chang, T.Y. Optically Pumped Submillimeter-Wave Sources. IEEE Trans. Microw. Theory Tech. 1974, 22, 983–988. [Google Scholar] [CrossRef]
- Shumyatsky, P.; Alfano, R.R. Terahertz sources. J. Biomed. Opt. 2001, 16, 033001. [Google Scholar] [CrossRef] [PubMed]
- Köhler, R.; Tredicucci, A.; Beltram, F.; Beere, H.E.; Rossi, F. Terahertz semiconductor-heterostructure laser. Cheminform 2002, 417, 156–159. [Google Scholar]
- Brown, E.R.; Mcintosh, K.A.; Nichols, K.B.; Dennis, C.L. Photomixing up to 3.8 THz in low-temperature-grown GaAs. Appl. Phys. Lett. 1995, 66, 285. [Google Scholar] [CrossRef]
- Song, H.-J.; Shimizu, N.; Furuta, T.; Suizu, K.; Ito, H. Broadband-frequency-tunable sub-terahertz wave generation using an optical comb, awgs, optical switches, and a uni-traveling carrier photodiode for spectroscopic applications. J. Lightw. Technol. 2008, 26, 2521–2530. [Google Scholar] [CrossRef]
- Efthymios, R.; Renaud, C.C.; Moodie, D.G.; Robertson, M.J.; Seeds, A.J. Traveling-wave uni-traveling carrier photodiodes for continuous wave thz generation. Opt. Express 2010, 18, 11105–11110. [Google Scholar]
- Preu, S.; Renner, F.H.; Malzer, S.; Doehler, G.H.; Wang, L.J.; Hanson, M.; Gossard, A.C.; Wilkinsom, T.U.; Brown, E.R. Efficient terahertz emission from ballistic transport enhanced n-i-p-n-i-p superlattice photomixers. Appl. Phys. Lett. 2007, 90, 2128. [Google Scholar] [CrossRef]
- Pilla, S. Enhancing the photomixing efficiency of optoelectronic devices in the terahertz regime. Appl. Phys. Lett. 2007, 90, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Ito, H.; Nakajima, F.; Furuta, T.; Ishibashi, T. Continuous THz-wave generation using antenna-integrated uni-travelling-carrier photodiodes. Semicond. Sci. Technol. 2005, 20, S191–S198. [Google Scholar] [CrossRef]
- Nellen, S.; Ishibashi, T.; Deninger, A.; Kohlhaas, R.B.; Liebermeister, L.; Schell, M.; Globish, B. Experimental comparison of utc- and pin-photodiodes for continuous-wave terahertz generation. J. Infrared Millim. Terahertz Waves 2020, 41, 343–354. [Google Scholar] [CrossRef] [Green Version]
- Roggenbuck, A.; Thirunavukkuarasu, K.; Schmitz, H.; Marx, J.; Grüninger, A.M. Using a fiber stretcher as a fast phase modulator in a continuous wave terahertz spectrometer. J. Opt. Soc. Am. B 2012, 29, 614–620. [Google Scholar] [CrossRef]
- Kim, J.Y.; Song, H.J.; Yaita, M.; Hirata, A.; Ajito, K. Cw-thz vector spectroscopy and imaging system based on 1.55-m fiber-optics. Opt. Express 2014, 22, 1735–1741. [Google Scholar] [CrossRef]
- Nahata, A.; Yardley, J.T.; Heinz, T.F. Free-space electro-optic detection of continuous-wave terahertz radiation. Appl. Phys. Lett. 1999, 75, 2524–2526. [Google Scholar] [CrossRef]
- Seeds, A.J.; Shams, H.; Fice, M.J.; Renaud, C.C. TeraHertz Photonics for Wireless Communications. J. Lightw. Technol. 2015, 33, 579–587. [Google Scholar] [CrossRef]
- Lewis, R.A. A review of terahertz detectors. J. Phys. D 2019, 52, 43. [Google Scholar] [CrossRef]
- Alves, F.; Grbovic, D.; Kearney, B.; Karunasiri, G. Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber. Opt. Lett. 2012, 37, 1886–1888. [Google Scholar] [CrossRef]
- Nagatsuma, T.; Horiguchi, S.; Minamikata, Y.; Yoshimizu, Y.; Hisatake, S.; Kuwano, S.; Yoshimoto, N.; Terada, J.; Takahashi, H. Terahertz wireless communications based on photonics technologies. Opt. Express 2013, 21, 23736–23747. [Google Scholar] [CrossRef]
- Lacombe, E.; Belem-Goncalves, C.; Luxey, C.; Gianesello, F.; Dirand, C.; Gloria, D.; Ducournau, G. 10-Gb/s Indoor THz Communications Using Industrial Si Photonics Technology. IEEE Microw. Wirel Compon. Lett. 2018, 28, 362–364. [Google Scholar] [CrossRef]
- Benea-Chelmus, I.C.; Salamin, Y.; Settembrini, F.F.; Fedoryshyn, Y.; Faist, J. Electro-optic interface for ultra-sensitive intra-cavity electric field measurements at microwave and terahertz frequencies. Optica 2020, 7, 498–505. [Google Scholar] [CrossRef]
- Kim, J.Y.; Nishi, H.; Song, H.J.; Fukuda, H.; Yaita, M.; Hirata, A.; Ajito, K. Compact and stable THz vector spectroscopy using silicon photonics technology. Opt. Express 2014, 22, 7178–7185. [Google Scholar] [CrossRef]
- Kim, J.; Moon, S.R.; Han, S.; Yoo, S.; Cho, S.H. Demonstration of photonics-aided terahertz wireless transmission system with using silicon photonics circuit. Opt. Express 2020, 28, 23397. [Google Scholar]
- Withayachumnankul, W.; Yamada, R.; Fumeaux, C.; Fujita, M.; Nagatsuma, T. All-dielectric integration of dielectric resonator antenna and photonic crystal waveguide. Opt. Express 2017, 25, 4706–14714. [Google Scholar] [CrossRef] [PubMed]
- Headland, D.; Withayachumnankul, W.; Yamada, R.; Fujita, M.; Nagatsuma, T. Terahertz multi-beam antenna using photonic crystal waveguide and Luneburg lens. APL Photonics 2018, 3, 126105. [Google Scholar] [CrossRef] [Green Version]
- Yee, C.M.; Sherwin, M.S. High-Q terahertz microcavities in silicon photonic crystal slabs. Appl. Phys. Lett. 2009, 94, 4648. [Google Scholar] [CrossRef]
- Malekabadi, A.; Charlebois, S. High resistivity silicon dielectric ribbon waveguide for single-mode low-loss propagation at F/G-bands. IEEE Trans. Terahertz Sci. Technol. 2014, 4, 447–453. [Google Scholar] [CrossRef]
- Ranjkesh, N.; Basha, M.; Taeb, A.; Safavi-Naeini, S. Silicon-on-glass dielectric waveguide Part II: For THz applications. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 280–287. [Google Scholar] [CrossRef]
- Xie, J.; Xi, Z.; Zang, X.; Chen, L.; Zhu, Y. Terahertz integrated device: High-Q silicon dielectric resonators. Opt. Mater. Express 2017, 8, 50. [Google Scholar] [CrossRef]
- Liu, A.Y.; Srinivasan, S.; Norman, J.; Gossard, A.C.; Bowers, J.E.; Department, M. Barbara, U.O.C.S.; Engineering, E.C. Quantum dot lasers for silicon photonics [invited]. Photonics Res. 2015, 3, B1–B9. [Google Scholar] [CrossRef]
- Jung, D.; Zhang, Z.; Norman, J.; Herrick, R.; Kennedy, M.; Patel, P.; Turnlund, K.; Jan, C.; Wan, Y.; Gossard, A. Highly reliable low-threshold inas quantum dot lasers on on-axis (001) si with 87% injection efficiency. ACS Photonics 2017, 5, 1094–1100. [Google Scholar] [CrossRef]
- Chen, S.; Li, W.; Wu, J.; Jiang, Q.; Tang, M.; Shutts, S.; Elliott, S.N.; Sobiesierski, A.; Seeds, A.J.; Ross, I. Electrically pumped continuouswave III-V quantum dot lasers on silicon. Nat. Photonics 2016, 10, 307–311. [Google Scholar] [CrossRef]
- Norman, J.C.; Jung, D.; Wan, Y.; Bowers, J.E. Perspective: The future of quantum dot photonic integrated circuits. APL Photonics 2018, 3, 030901. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.Y.; John, B. Photonic integration with epitaxial iii–v on silicon. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–12. [Google Scholar] [CrossRef]
- Liu, A.Y.; Zhang, C.; Norman, J.; Snyder, A.; Lubyshev, D.; Fastenau, J.M.; Amy, W.K.L.; Gossard, A.C.; Bowers, J.E. High performance continuous wave 1.3μm quantum dot lasers on silicon. Appl. Phys. Lett. 2014, 104, 511. [Google Scholar]
- Dai, D.; Fang, A.; Bowers, J.E. Hybrid silicon lasers for optical interconnects. New J. Phys. 2009, 11, 125016. [Google Scholar] [CrossRef]
- Fang, A.W.; Park, H.; Cohen, O.; Jones, R.; Bowers, J.E. Electrically pumped hybrid algainas-silicon evanescent laser. Opt. Express 2006, 14, 9203–9210. [Google Scholar] [CrossRef]
- Sysak, M.N.; Liang, D.; Jones, R.; Kurczveil, G.; Piels, M.; Fiorentino, M.; Beausoleil, R.G.; Bowers, J.E. Hybrid silicon laser technology: A thermal perspective. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 1490–1498. [Google Scholar] [CrossRef]
- Boller, K.J.; Rees, A.V.; Fan, Y.; Mak, J.; Heideman, R.G. Hybrid integrated semiconductor lasers with silicon nitride feedback circuits. Photonics 2019, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Kurczveil, G.; Liang, D.; Fiorentino, M.; Beausoleil, R.G. Robust hybrid quantum dot laser for integrated silicon photonics. Opt. Express 2016, 24, 16167. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Guo, Y.; Lu, L.; Nisar, M.S.; Chen, J.; Zhou, L. Hybrid dual-gain tunable integrated InP-Si3N4 external cavity laser. Opt. Express 2021, 29, 10958–10966. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Liang, D.; Kurczveil, G.; Descos, A.; Beausoleil, R.G. Hybrid quantum-dot microring laser on silicon. Optica 2019, 6, 1145. [Google Scholar] [CrossRef]
- Tran, M.A.; Huang, D.; Bowers, J.E. Tutorial on narrow linewidth tunable semiconductor lasers using si/iii-v heterogeneous integration. APL Photonics 2019, 4, 111101. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Tran, M.A.; Guo, J.; Peters, J.; Komljenovic, T.; Malik, A.; Morton, P.A.; Bowers, J.E. High-power sub-kHz linewidth lasers fully integrated on silicon. Optica 2019, 6, 745–752. [Google Scholar] [CrossRef] [Green Version]
- Epping, J.P.; Oldenbeuving, R.M.; Geskus, D.; Visscher, I.; Grootjans, R.; Roeloffzen, C.G.H.; Heideman, R.G. High Power Integrated Laser for Microwave Photonics. In Proceedings of the 2020 Optical Fiber Communications Conference and Exhibition (OFC), San Diego, CA, USA, 8–12 March 2020. [Google Scholar]
- Tani, M.; Gu, P.; Hyodo, M.; Sakai, K.; Hidaka, T. Generation of coherent terahertz radiation byphotomixing of dual-mode lasers. Opt. Quantum Electron. 2000, 32, 503–520. [Google Scholar] [CrossRef]
- Yang, S.H.; Watts, R.; Li, X.; Wang, N.; Cojocaru, V.; O’Gorman, J.; Barry, L.; Jarrahi, M. Tunableterahertz wave generation through a bimodal laser diodeand plasmonic photomixer. Opt. Express 2015, 23, 31206–31215. [Google Scholar] [CrossRef]
- Hou, L.; Haji, M.; Eddie, I.; Zhu, H.; Marsh, J.H. Laterally coupled dual-grating distributed feedbacklasers for generating mode-beat terahertz signals. Opt. Lett. 2015, 40, 182–185. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Hou, B.; Liang, S.; Chen, D.; Hou, L.; Marsh, J.H. Terahertz signal generation based on adual-mode 1.5 µm DFB semiconductor laser. In Proceedings of the Conference on Lasers and Electro-Optics/Pacific Rim, Hong Kong, China, 29 July–3 August 2018. [Google Scholar]
- Hou, L.; Tang, S.; Hou, B.; Marsh, J.H. Photonic integrated circuits for terahertz source generation. IET Optoelectron. 2020, 14, 135–142. [Google Scholar] [CrossRef]
- Kim, N.; Han, S.; Ryu, H.; Ko, H.; Park, J.; Lee, D.; Jeon, M.Y.; Park, K.H. Distributed feedback laser diode integrated with distributed Bragg reflector for continuous-wave terahertz generation. Opt. Express 2012, 20, 17496–17502. [Google Scholar] [CrossRef]
- Carpintero, G.; Hisatake, S.; Felipe, D.D.; Guzman, R.; Nagatsuma, T.; Keil, N. Wireless Data Transmission at Terahertz Carrier Waves Generated from a Hybrid InP-Polymer Dual Tunable DBR Laser Photonic Integrated Circuit. Sci. Rep. 2018, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Yin, B.; Michel, J. On-chip light sources for silicon photonics. Light Sci. Appl. 2015, 5, 1–13. [Google Scholar] [CrossRef]
- Davenport, M.L.; Liu, S.; Bowers, J.E. Integrated heterogeneous silicon/Ⅲ–Ⅴ mode-locked lasers. Photonics Res. 2018, 6, 238–248. [Google Scholar] [CrossRef]
- Krtner, F.X.; Singh, N. Integrated CMOS-Compatible Mode-Locked Lasers and Their Optoelectronic Applications. In Proceedings of the IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), Nashville, TN, USA, 3–6 November 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Criado, A.R.; D Dios, C.; Acedo, P.; Carpintero, G.; Yvind, K. Comparison of Monolithic Optical Frequency Comb Generators Based on Passively Mode-Locked Lasers for Continuous Wave mm-Wave and Sub-THz Generation. J. Lightw. Technol. 2012, 30, 3133–3141. [Google Scholar] [CrossRef] [Green Version]
- Lo, M.; Guzman, R.; Gordon, C.; Carpintero, G. Mode-locked laser with pulse interleavers in a monolithic photonic integrated circuit for millimeter wave and terahertz carrier generation. Opt. Lett. 2017, 42, 1532–1535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Criado, A.R.; Acedo, P.; Carpintero, G.; Dios, C.D.; Yvind, K. Observation of phase noise reduction in photonically synthesized sub-THz signals using a passively mode-locked laser diode and highly selective optical filtering. Opt. Express 2012, 20, 1253–1260. [Google Scholar] [CrossRef] [Green Version]
- Sorace-Agaskar, C.; Callahan, P.; Shtyrkova, K.; Baldycheva, A.; Moresco, M.; Bradley, J.; Peng, M.; Li, N.; Magden, E.; Purnawirman; et al. Integrated Mode-Locked Lasers in a CMOS-Compatible Silicon Photonic Platform. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO), Washington, DC, USA, 10–15 May 2015. [Google Scholar]
- Forrester, A.T.; Gudmundsen, R.A.; Johnson, P.O. Photoelectric Mixing of Incoherent Light. Phys. Rev. Lett. 1955, 99, 1691–1700. [Google Scholar] [CrossRef]
- Chen, P.; Hosseini, M.; Babakhani, A. An Integrated Germanium-Based Optical Waveguide Coupled THz Photoconductive Antenna in Silicon. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 June 2016. [Google Scholar]
- Chen, P.; Hosseini, M.; Babakhani, A. An Integrated Germanium-Based THz Impulse Radiator with an Optical Waveguide Coupled Photoconductive Switch in Silicon. Micromachines 2019, 10, 367. [Google Scholar] [CrossRef] [Green Version]
- Offermans, P.; Zhang, L.; Heyn, P.D.; Janssen, S.; Campenhout, J.V. Continuous wave generation up to 1.3 THz using antenna-coupled silicon integrated Ge photodiodes. In Proceedings of the 2018 11th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT), Hangzhou, China, 5–7 September 2018. [Google Scholar]
- Imec. Available online: https://drupal.imec-int.com/sites/default/files/2019-03/Photonic%20integrated%20circuit_EN_v4_MPW_yi_0.pdf (accessed on 20 May 2021).
- Novack, A.; Gould, M.; Yang, Y.; Xuan, Z.; Streshinsky, M.; Liu, Y.; Capellini, G.; Lim, A.E.-J.; Lo, G.-Q.; Baehr-Jones, T.; et al. Germanium photodetector with 60 GHz bandwidth usinginductive gain peaking. Opt. Express 2013, 21, 28387–28393. [Google Scholar] [CrossRef] [PubMed]
- Liu, J. Monolithically Integrated Ge-on-Si Active Photonics. Photonics 2014, 1, 162–197. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Lipson, M. Ultra-low capacitance and high speed germanium photodetectors on silicon. Opt. Express 2009, 17, 79016. [Google Scholar] [CrossRef] [PubMed]
- Vivien, L.; Polzer, A.; Marris-Morini, D.; Osmond, J.; Hartmann, J.M.; Crozat, P.; Cassan, E.; Kopp, C.; Zimmermann, H.; Fédéli, M. Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt. Express 2012, 20, 1096–1101. [Google Scholar] [CrossRef] [PubMed]
- Lacombe, E.; Gianesello, F.; Durand, C.; Ducournau, G.; Gloria, D. Sub-THz source integrated in industrial silicon Photonic technology targeting high data rate wireless applications. Proceedings of Silicon Monolithic Integrated Circuits in Rf Systems, Phoenix, AZ, USA, 15–18 January 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar]
- Bowers, S.M.; Abiri, B.; Aflatouni, F.; Hajimiri, A. A Compact Optically Driven Travelling-Wave Radiating Source in Optical Fiber Communication Conference; OSA Technical Digest (Online); Optical Society of America: Washington, DC, USA, 2014. [Google Scholar]
- Lacombe, E.; Belem-Goncalves, C.; Luxey, C.; Gianesello, F.; Durand, C.; Gloria, D. 300 GHz OOK Transmitter Integrated in Advanced Silicon Photonics Technology and Achieving 20 Gb/s. In Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Philadephia, PA, USA, 10–12 June 2018. [Google Scholar]
- Wang, X.; Gan, X. Graphene integrated photodetectors and opto-electronic devices-a review. Chin. Phys. B 2017, 26, 034203. [Google Scholar] [CrossRef]
- Romagnoli, M.; Sorianello, V.; Midrio, M.; Koppens, F.H.L.; Huyghebaert, C.; Neumaier, D.; Galli, P.; Templ, W.; D’Errico, A.; Ferrari, A. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 2018, 3, 392–414. [Google Scholar] [CrossRef] [Green Version]
- Gosciniak, J.; Rasras, M.; Khurgin, J.B. Ultrafast plasmonic graphene photodetector based on channel photo-thermoelectric effect. ACS Photonics 2020, 7, 488–498. [Google Scholar] [CrossRef] [Green Version]
- Harter, T.; Muehlbrandt, S.; Ummethala, S.; Schmid, A.; Nellen, S.; Hahn, L.; Freude, W.; Koos, C. Silicon–plasmonic integrated circuits for terahertz signal generation and coherent detection. Nat. Photonics 2018, 12, 625–633. [Google Scholar] [CrossRef] [Green Version]
- Tani, M.; Lee, K.S.; Zhang, X.C. Detection of terahertz radiation with low-temperature-grown gaas-based photoconductive antenna using 1.55 μm probe. Appl. Phys. Lett. 2000, 77, 1396–1398. [Google Scholar] [CrossRef] [Green Version]
- Sartorius, B.; Roehle, H.; Künzel, H.; Bttcher, J.; Schell, M. All-fiber terahertz time-domain spectrometer operating at 1.5 m telecom wavelengths. Opt. Express 2008, 16, 9565–9570. [Google Scholar] [CrossRef] [PubMed]
- Kiessling, J.; Sowade, R.; Breunig, I.; Buse, K.; Dierolf, V. Cascaded optical parametric oscillations generating tunable terahertz waves in periodically poled lithium niobate crystals. Opt. Express 2009, 17, 87–91. [Google Scholar] [CrossRef]
- Mclaughlin, C.V.; Hayden, L.M.; Polishak, B.; Su, H.; Luo, J.; Kim, T.D.; Jen, K.Y. Wideband 15 thz response using organic electro-optic polymer emitter-sensor pairs at telecommunication wavelengths. Appl. Phys. Lett. 2008, 92, 1–3. [Google Scholar] [CrossRef]
- Salamin, Y.; Benea-Chelmus, I.C.; Fedoryshyn, Y.; Heni, W.; Elder, D.L.; Dalton, L.R.; Faist, J.; Leuthold, J. Compact and ultra-efficient broadband plasmonic terahertz field detector. Nat. Commun. 2019, 10, 5550. [Google Scholar] [CrossRef]
- Sinyukov, A.M.; Liu, Z.; Hor, Y.L.; Su, K.; Zimdars, D. Rapid-phase modulation of terahertz radiation for high-speed terahertz imaging and spectroscopy. Opt. Lett. 2008, 33, 1593–1595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouret, G.; Matton, S.; Bocquet, R.; Bigourd, D.; Hindle, F.; Cuisset, A.; Lampin, J.F.; Blary, K.; Lippens, D. Thz media characterization by means of coherent homodyne detection, results and potential applications. Appl. Phys. B 2007, 89, 395–399. [Google Scholar] [CrossRef]
- Mendis, R.; Sydlo, C.; Sigmund, J.; Feiginov, M.; Hartnagel, H.L. Coherent generation and detection of continuous terahertz waves using two photomixers driven by laser diodes. J. Infrared Millim. Terahertz Waves 2005, 26, 201–207. [Google Scholar] [CrossRef]
- Roggenbuck, A.; Deninger, A.; Thirunavukkuarasu, K.; Schmitz, H.; Marx, J.; Vidal, E.; Langenbach, M.; Hemberger, J.; Gruaninger, M. A fast cw-thz spectrometer using fiber stretchers. In Proceedings of the International Conference on Infrared, Millimeter, and Terahertz Waves, Houston, TX, USA, 2–7 October 2011. [Google Scholar]
- Goebel, T.; Schoenherr, D.; Sydlo, C.; Feiginov, M.; Meissner, P.; Hartnagel, H.L. Continuous-wave terahertz system with electro-optical terahertz phase control. Electron. Lett. 2008, 44, 863–864. [Google Scholar] [CrossRef]
- Kim, J.Y.; Song, H.J.; Ajito, K.; Yaita, M.; Kukutsu, N. Continuous-wave coherent homodyne detection with balanced electro-optical phase modulation. In Proceedings of the 37th International Conference on Infrared, Millimeter, and Terahertz Waves, Wollongong, NSW, Australia, 23–28 September 2012. [Google Scholar]
- Kim, J.Y.; Song, H.J.; Ajito, K.; Yaita, M.; Kukutsu, N. Continuous-Wave THz Homodyne Spectroscopy and Imaging System with Electro-Optical Phase Modulation for High Dynamic Range. IEEE Trans. Terahertz Sci. Tech. 2013, 3, 158–164. [Google Scholar] [CrossRef]
- Stanze, D.; Göbel, T.; Dietz, R.J.B.; Sartorius, B.; Schell, M. High-speed coherent CW terahertz spectrometer. Electron. Lett. 2011, 47, 1292–1294. [Google Scholar] [CrossRef]
- Song, H.J.; Kim, J.Y.; Nishi, H.; Fukuda, H.; Ajito, K. Terahertz homodyne spectroscopy system based silicon photonic integrated circuit. In Proceedings of the International Topical Meeting on Microwave Photonics (MWP) Jointly Held with the 9th Asia-Pacific Microwave Photonics Conference (APMP), IEICE, Sapporo, Japan, 20–23 October 2014. [Google Scholar]
- Ajito, K.; Kim, J.Y.; Song, H.-J. Continuous wave terahertz spectroscopy system designed for medical field. NTT Tech. Rev. 2015, 13, 1–6. [Google Scholar]
- Boulogeorgos, A.A.; Angeliki, A.; Thomas, M.; Colja, S.; Robert, E.; Alexandros, K.; Panagiotis, S.; Dimitrios, K.; Panteleimon-Konstantinos, C.; Joonas, K. Terahertz Technologies to Deliver Optical Network Quality of Experience in Wireless Systems Beyond 5G. IEEE Commun. Mag. 2018, 56, 144–151. [Google Scholar] [CrossRef] [Green Version]
- Petrov, V.; Kokkoniemi, J.; Moltchanov, D.; Lehtomäki, J.; Koucheryavy, Y.; Juntti, M. Last Meter Indoor Terahertz Wireless Access: Performance Insights and Implementation Roadmap. IEEE Commun. Mag. 2018, 56, 158–165. [Google Scholar] [CrossRef] [Green Version]
- Ummethala, S.; Harter, T.; Koehnle, K.; Li, Z.; Muehlbrandt, S.; Kutuvantavida, Y.; Kemal, J.; Marin-Palomo, P.; Schaefer, J.; Tessmann, A.; et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat. Photonics 2019, 13, 519–524. [Google Scholar] [CrossRef]
- Liu, K.; Jia, S.; Wang, S.; Pang, X.; Li, W.; Zheng, S.; Chi, H.; Jin, X.; Zhang, X.; Yu, X. 100 Gbit/s THz Photonic Wireless Transmission in the 350-GHz Band with Extended Reach. IEEE Photonic Technol. Lett. 2018, 30, 1064–1067. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Wang, K.; Kong, M.; Zhou, W.; Zhu, Z.; Wang, C.; Zhao, M.; Chang, G.K. 120 Gb/s Wireless Terahertz-Wave Signal Delivery by 375 GHz-500 GHz Multi-Carrier in a 2 × 2 MIMO System. J. Lightw. Technol. 2019, 37, 606–611. [Google Scholar] [CrossRef]
- Castro, C.; Elschner, R.; Merkle, T.; Schubert, C.; Frenud, R. 100 Gb/s Real-Time Transmission over a THz Wireless Fiber Extender Using a Digital-Coherent Optical Modem. In Proceedings of the Optical Fiber Communication Conference, Washington, DC, USA, 8–12 March 2020. [Google Scholar]
- Harter, T.; Fullner, C.; Kemal, J.N.; Ummethala, S.; Brosi, M.; Bründermann, E.; Freude, W.; Randel, S.; Koos, C. 110-m THz Wireless Transmission at 100 Gbit/s Using a Kramers-Kronig Schottky Barrier Diode Receiver. In Proceedings of the European Conference on Optical Communication (ECOC), Roma, Italy, 23–27 September 2018. [Google Scholar]
- Harter, T.; Fullner, C.; Kemal, J.N.; Ummethala, S.; Koos, C. Generalized Kramers-Kronig receiver for 16QAM wireless THz transmission at 110 Gbit/s. In Proceedings of the 45th European Conference on Optical Communication (ECOC), Dublin, Ireland, 22–26 September 2019. [Google Scholar]
- Seeds, A.J.; Williams, K.J. Microwave Photonics. J. Lightw. Technol. 2006, 24, 4628–4641. [Google Scholar] [CrossRef]
- Marpaung, D.; Yao, J.; Capmany, J. Integrated Microwave Photonics. Nat. Photonics 2019, 13, 80–90. [Google Scholar] [CrossRef]
- Withayachumnankul, W.; Yamada, R.; Fujita, M.; Nagatsuma, T. All-dielectric rod antenna array for terahertz communications. APL Photonics 2018, 3, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Yata, M.; Fujita, M.; Nagatsuma, T. Photonic-crystal diplexers for terahertz-wave applications. Opt. Express 2016, 24, 7835–7849. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Zhang, J.; Zhang, W.; Grischkowsky, D. Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon. J. Opt. Soc. Am. B 2004, 21, 1379–1386. [Google Scholar] [CrossRef] [Green Version]
- Withayachumnankul, W.; Fujita, M.; Nagatsuma, T. Integrated silicon photonic crystals toward terahertz communications. Adv. Opt. Mater. 2018, 6, 1800401.1–1800401.7. [Google Scholar] [CrossRef] [Green Version]
- Malekabadi, S.; Boone, F.; Deslandes, D.; Morris, D.; Charlebois, S. Low loss low dispersive high-resistivity silicon dielectric slab waveguide for THz region. In Proceedings of the IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2–7 June 2013. [Google Scholar]
- Yeh, C.; Shimabukuro, F.; Siegel, P. Low-loss terahertz ribbon waveguides. Appl. Opt. 2005, 44, 5937–5946. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Xue, Q.; Pang, S.; Hui, J.; Zhao, X. Low loss dielectric ridge waveguide based on high resistivity silicon for Ey11 mode propagation at 750–1000 GHz. In Proceedings of the IEEE MTT-S International Microwave Symposium, Phoenix, AZ, USA, 17–22 May 2015. [Google Scholar]
- Gao, W.; Yu, X.; Fujita, M.; Nagatsuma, T.; Fumeaux, C.; Withayachumnankul, W. Effective-medium-cladded dielectric waveguides for terahertz waves. Opt. Express 2019, 27, 38721–38734. [Google Scholar] [CrossRef] [Green Version]
- Otter, W.; Hanham, S.; Ridler, N.; Marino, G.; Klein, N.; Lucyszyn, S. 100 GHz ultra-high Q-factor photonic crystal resonators. Sens. Actuat. A Phys 2014, 217, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Vogt, D.W.; Jones, A.H.; Leonhardt, R. Free-space coupling to symmetric high-Q terahertz whispering-gallery mode resonators. Opt. Lett. 2019, 44, 2220–2223. [Google Scholar] [CrossRef] [PubMed]
- Vogt, D.W.; Leonhardt, R. Ultra-high Q terahertz whispering-gallery modes in a silicon resonator. APL Photonics 2018, 3, 051702. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Zhu, X.; Zhang, H.; Zang, X.; Chen, L.; Balakin, A.; Shkurinov, A.; Zhu, Y. Terahertz-frequency temporal differentiator enabled by a high-Q resonator. Opt. Express 2020, 28, 7898–7905. [Google Scholar] [CrossRef] [PubMed]
- Frankel, M.Y.; Gupta, S. Terahertz attenuation and dispersion characteristics of coplanar transmission lines. IEEE Trans. Microw. Theory 1991, 39, 910–916. [Google Scholar] [CrossRef]
- Zhang, J.; Hsiang, T.Y. Attenuation characteristics of coplanar waveguides at subterahertz frequencies. J. Electromagn. Wave 2005, 20, 1411–1417. [Google Scholar] [CrossRef]
- Zerounian, N.; Aouimeur, W.; Grimault-Jacquin, A.-S.; Ducournau, G.; Gaquiere, C.; Aniel, F. Coplanar waveguides on BCB measured up to 760 GHz. J. Electromagn. Wave 2021, 72, 1–11. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, S.; Dong, G.; Wang, R.; Zhang, X. On-chip single-mode high-q terahertz whispering gallery mode resonator. Opt. Lett. 2019, 44, 2835–2838. [Google Scholar] [CrossRef]
- Vogt, D.W.; Jones, A.H.; Leonhardt, R. Thermal tuning of silicon terahertz whispering-gallery mode resonators. Appl. Phys. Lett. 2018, 113, 011101. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, G.; Yuan, S.; Chen, L.; Zhang, X. Voltage-actuated thermally tunable on-chip terahertz filters based on a whispering gallery mode resonator. Opt. Lett. 2019, 44, 4670–4673. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, J.; Ye, W.; Zhou, L.; Guo, X.; Zang, X.; Chen, L.; Zhu, Y. A Review on Terahertz Technologies Accelerated by Silicon Photonics. Nanomaterials 2021, 11, 1646. https://doi.org/10.3390/nano11071646
Xie J, Ye W, Zhou L, Guo X, Zang X, Chen L, Zhu Y. A Review on Terahertz Technologies Accelerated by Silicon Photonics. Nanomaterials. 2021; 11(7):1646. https://doi.org/10.3390/nano11071646
Chicago/Turabian StyleXie, Jingya, Wangcheng Ye, Linjie Zhou, Xuguang Guo, Xiaofei Zang, Lin Chen, and Yiming Zhu. 2021. "A Review on Terahertz Technologies Accelerated by Silicon Photonics" Nanomaterials 11, no. 7: 1646. https://doi.org/10.3390/nano11071646
APA StyleXie, J., Ye, W., Zhou, L., Guo, X., Zang, X., Chen, L., & Zhu, Y. (2021). A Review on Terahertz Technologies Accelerated by Silicon Photonics. Nanomaterials, 11(7), 1646. https://doi.org/10.3390/nano11071646