Diamond Nanoparticles-Porphyrin mTHPP Conjugate as Photosensitizing Platform: Cytotoxicity and Antibacterial Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diamond Nanoparticles and Organics
2.2. ND Purification
2.3. Synthesis of meso-5, 10, 15, 20-Tetrakis (3-Hydroxyphenyl) Porphyrin—(mTHPP)
2.4. Synthesis of ND-mTHPP Nanoconjugate System
2.5. Size and Zeta Potential—DLS (Dynamic Light Scattering)
2.6. FT-IR (Fourier Transformed Infrared Spectroscopy)
2.7. Cell Viability Assay
2.8. Antibacterial Assay
3. Results
3.1. Conjugation of mTHPP with ND
3.2. ND Size, Zeta Potential and Size Distribution
3.3. Antibacterial Assay
3.4. Cell Viability Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ager, J.W., III; Veirs, D.K.; Rosenblatt, G.M. Spatially resolved Raman studies of diamond films grown by chemical vapor deposition. Phys. Rev. B 1991, 43, 6491–6500. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, G.; Chan, I.Y.; Kolesov, R.; Al-Hmoud, M.; Tisler, J.; Shin, C.; Kim, C.; Wojcik, A.; Hemmer, P.R.; Krueger, A.; et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 2008, 455, 648–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basso, L.; Gorrini, F.; Cazzanelli, M.; Bazzanella, N.; Bifon, A.; Miotello, A. All-optical single-step process for production of nanometric-sized fuorescent diamonds. Nanoscale 2018, 10, 5738–5744. [Google Scholar] [CrossRef] [PubMed]
- Le Sage, D.; Arai, K.; Glenn, D.R.; DeVience, S.J.; Pham, L.M.; Rahn-Lee, L.; Lukin, M.; Yacoby, A.; Komelili, A.; Walsworth, R. Optical magnetic imaging of living cells. Nature 2013, 496, 486–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouri, R.; Beveratos, A.; Poizat, J.P.; Grangier, P. Photon antibunching in the fluorescence of individual color centers in Diamond. Opt. Lett. 2000, 25, 1294–1296. [Google Scholar] [CrossRef] [Green Version]
- Maze, R.J.; Stanwix, P.L.; Hodges, J.S.; Hong, S.; Taylor, J.M.; Cappellaro, P.; Jiang, L.; Dutt, M.V.G.; Togan, E.; Zibrov, A.S.; et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 2008, 455, 644–647. [Google Scholar] [CrossRef]
- Ma, Y.Z.; Zou, G.T.; Yang, H.B.; Meng, J.F. Conversion of fullerenes to diamond under high temperature. Appl. Phys. Lett. 1994, 65, 822–823. [Google Scholar] [CrossRef]
- Gorrini, F.; Cazzanelli, M.; Bazzanella, N.; Edla, R.; Gemmi, M.; Cappello, V.; David, J.; Dorigoni, C.; Bifone, A.; Miotello, A. On the thermodynamic path enabling a room-temperature, laser-assisted graphite to nanodiamond transformation. Sci. Rep. 2016, 6, 35244. [Google Scholar] [CrossRef]
- Yang, G.W.; Wang, J.B.; Liu, Q.X. Preparation of nanocrystalline diamonds using pulsed laser induced reactive quenching. J. Phys. Condens. Matter. 1998, 10, 7923–7930. [Google Scholar] [CrossRef]
- Galimov, E.M.; Kudin, A.M.; Skrobogatskii, V.N.; Plotnichenko, V.G.; Bondarev, O.L.; Zarubin, B.G.; Strazdovski, V.V.; Aronin, A.S.; Fisenko, A.V.; Bykov, I.V.; et al. Experimental corroboration of the synthesis of diamond in the cavitatior process. Dokl. Phys. 2004, 49, 150–153. [Google Scholar] [CrossRef]
- Khachatryan, A.K.; Aloyan, S.G.; May, P.W.; Sargsyan, R.; Khachatryan, V.A.; Baghdasaryan, V.S. Graphite-to-diamond transformation induced by ultrasound cavitation. Diam. Relat. Mater. 2008, 17, 931–936. [Google Scholar] [CrossRef]
- Hurtado, C.R.; Wachesk, C.C.; Queiroz, R.C.; de Macedo, E.F.; de Oliveira Correia, R.F.B.; Taiariol, T.S.; Diniz, M.F.; dos Santos, A.M.I.; Montanheiro, T.L.A.; Hurtado, G.R.; et al. A simple procedure to obtain nanodiamonds from leftover of HFCVD system for biological application. SN Appl. Sci. 2020, 2, 352. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira Correia, R.F.B.; Wachesk, C.C.; Hurtado, C.R.; Damm, D.D.; Taiariol, T.S.; Tada, D.B.; Vasconcelos, G.; Corat, E.J.; Trava-Airoldi, V.J. CVD-diamond nanoparticle synthesis for DLC film application. J. Nanopart. Res. 2020, 22, 293. [Google Scholar] [CrossRef]
- Krüger, A.; Liang, Y.; Jarre, G.; Stegk, J. Surface functionalisation of detonation diamond suitable for biological applications. J. Mater. Chem. 2006, 16, 2322–2328. [Google Scholar] [CrossRef]
- Krueger, A.; Ozawa, M.; Jarre, G.; Liang, Y.; Stegk, J.; Lu, L. Deagglomeration and functionalisation of detonation diamond. Phys. Status Solidi 2007, 204, 2881–2887. [Google Scholar] [CrossRef]
- Krueger, A. Diamond nanoparticles: Jewels for chemistry and physics. Adv. Mater. 2008, 20, 2445–2449. [Google Scholar] [CrossRef]
- Krueger, A.; Lang, D. Functionality is key: Recent progress in the surface modification of nanodiamond. Adv. Func. Mater. 2012, 22, 890–906. [Google Scholar] [CrossRef]
- Chatterjee, A.; Perevedentseva, E.; Jani, M.; Cheng, C.Y.; Ye, Y.S.; Chung, P.H.; Cheng, C.L. Antibacterial effect of ultrafine nanodiamond against gram-negative bacteria Escherichia coli. J. Biomed. Opt. 2015, 20, 051014. [Google Scholar] [CrossRef]
- Wehling, J.; Dringen, R.; Zare, R.N.; Maas, M.; Rezwan, K. Bactericidal activity of partially oxidized nanodiamonds. ACS Nano 2014, 8, 6475–6483. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Wang, X.; Li, Q.; Peng, X.; Wang, L.; Li, P.; Ye, Z.; Xing, X. Designing of membrane-active nano-antimicrobials based on cationic copolymer functionalized nanodiamond: Influence of hydrophilic segment on antimicrobial activity and selectivity. Mater. Sci. Eng. C 2018, 92, 307–316. [Google Scholar] [CrossRef]
- Ong, S.Y.; van Harmelen, R.J.J.; Norouzi, N.; Offens, F.; Venema, I.M.; Habibi Najafi, M.B.; Schirhagl, R. Interaction of nanodiamonds with bacteria. Nanoscale 2018, 10, 17117–17124. [Google Scholar] [CrossRef]
- Skinner, K.; Sandoe, J.A.T.; Rajendran, R.; Ramage, G.; Lang, S. Efficacy of rifampicin combination therapy for the treatment of enterococcal infections assessed in vivo using a Galleria mellonella infection model. Int. J. Antimicrob. Agents 2017, 49, 507–511. [Google Scholar] [CrossRef] [Green Version]
- Rishi, P.; Vashist, T.; Sharma, A.; Kaur, A.; Kaur, A.; Kaur, N.; Kaur, I.P.; Tewari, R. Efficacy of designer K11 antimicrobial peptide (a hybrid of melittin, cecropin A1 and magainin 2) against Acinetobacter baumannii-infected wounds. Pathog. Dis. 2018, 76, fty072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conceição, K.; Cena, G.L.; Silva, V.A.; Neto, X.A.O.; Andrade, V.M.; Tada, D.B.; Richardson, M.; Andrade, S.A.; Dias, S.A.; Castanho, M.A.R.B.; et al. Design of bioactive peptides derived from CART sequence isolated from the toadfish Thalassophryne nattereri. 3 Biotech. 2020, 10, 162. [Google Scholar] [CrossRef] [PubMed]
- Arruda, D.C.; de Oliveira, T.D.; Cursino, P.H.F.; Maia, V.S.C.; Berzaghi, R.; Travassos, L.R.; Tada, D.B. Inhibition of melanoma metastasis by dual-peptide PLGA NPS. Biopolymers 2017, 108, e23029. [Google Scholar] [CrossRef] [PubMed]
- Garcez, A.S.; Kaplan, M.; Jensen, G.J.; Scheidt, F.R.; Oliveira, E.M.; Suzuki, S.S. Effects of antimicrobial photodynamic therapy on antibiotic-resistant Escherichia coli. Photodiagn. Photodyn. Ther. 2020, 32, 102029. [Google Scholar] [CrossRef]
- Mekkawy, A.I.; El-Mokhtar, M.A.; Nafady, N.A.; Yousef, N.; Hamad, M.A.; El-Shanawany, S.M.; Ibrahim, E.H.; Elsabahy, M. In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: Effect of surface coating and loading into hydrogels. Int. J. Nanomed. 2017, 12, 759–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Formaggio, D.M.D.; de Oliveira Neto, X.A.; Rodrigues, L.D.A.; de Andrade, V.M.; Nunes, B.C.; Ferreira, M.L.; Ferreira, F.G.; Wachesck, C.C.; Camargo, E.R.; Conceição, K.; et al. In vivo toxicity and antimicrobial activity of AuPt bimetallic nanoparticles. J. Nanopart. Res. 2019, 21, 244. [Google Scholar] [CrossRef]
- Da Silva, B.G.M.; Carvalho, M.L.; Rosseti, I.B.; Zamuner, S.; Costa, M.S. Photodynamic antimicrobial chemotherapy (PACT) using toluidine blue inhibits both growth and biofilm formation by Candida krusei. Lasers Med Sci. 2018, 33, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Mroz, P.; Dai, T.; Huang, Y.Y.; St Denis, T.G.; Hamblin, M.R. Photodynamic Therapy for Cancer and for Infections: What Is the Difference? Isr. J. Chem. 2012, 52, 691–705. [Google Scholar] [CrossRef] [Green Version]
- Hamblin, M.R. Antimicrobial photodynamic inactivation: A bright new technique to kill resistant microbes. Curr. Opin. Microbiol. 2016, 33, 67–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wainwright, M. Photodynamic antimicrobial chemotherapy (PACT). J. Antimicrob. Chemother. 1998, 42, 13–28. [Google Scholar] [CrossRef] [PubMed]
- Barroso, R.A.; Navarro, R.; Tim, C.R.; Ramos, L.P.; Oliveira, L.D.; Araki, A.T.; Fernandes, K.G.C.; Macedo, D.; Assis, L. Antimicrobial photodynamic therapy against Propionibacterium acnes biofilms using hypericin (Hypericum perforatum) photosensitizer: In vitro study. Lasers Med. Sci. 2020. [Google Scholar] [CrossRef]
- Tada, D.B.; Baptista, M. Photosensitizing nanoparticles and the modulation of ROS generation. Front. Chem. 2015, 3, 33. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Liu, R.; Xu, Y.; Qian, L.; Zhifei Dai, Z. Photosensitizer Nanoparticles Boost Photodynamic Therapy for Pancreatic Cancer Treatment. Nano-Micro Lett. 2021, 13, 35. [Google Scholar] [CrossRef]
- Soy, R.C.; Babu, B.; Oluwole, D.O.; Nwaji, N.; Oyim, J.; Amuhaya, E.; Prinsloo, E.; Mack, J.; Nyokong, T. Photophysicochemical properties and photodynamic therapy activity of chloroindium(III) tetraarylporphyrins and their gold nanoparticle conjugates. J. Porphyr. Phthalocyanines 2019, 23, 34–45. [Google Scholar] [CrossRef]
- Tsolekile, N.; Ncapayi, V.; Parani, S.; Sakho, E.; Matoetoe, M.; Songca, S.; Oluwafemi, O.S. Synthesis of fluorescent CuInS2/ZnS quantum dots—porphyrin conjugates for photodynamic therapy. MRS Commun. 2018, 8, 398–403. [Google Scholar] [CrossRef]
- Matshitse, R.; Managa, M.; Nyokong, T. The modulation of the photophysical and photodynamic therapy activities of a phthalocyanine by detonation nanodiamonds: Comparison with graphene quantum dots and carbon nanodots. Diam. Relat. Mater. 2020, 101, 107617. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (NCCLS). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 2nd ed.; NCCLS Document M27-A2; NCCLS: Wayne, PA, USA, 2002; ISBN 1-56238-469-4. [Google Scholar]
- Matshitse, R.; Khene, S.; Nyokong, T. Photophysical and nonlinear optical characteristics of pyridyl substituted phthalocyanine—Detonation nanodiamond conjugated systems in solution. Diam. Relat. Mater. 2019, 94, 218–232. [Google Scholar] [CrossRef]
- Tsolekile, N.; Nahle, S.; Zikalala, N.; Parani, S.; Sakho, E.H.M.; Joubert, O.; Matoetoe, M.C.; Songca, S.P.; Oluwafemi, O.S. Cytotoxicity, fluorescence tagging and gene-expression study of CuInS/ZnS QDS—Meso (hydroxyphenyl) porphyrin conjugate against human monocytic leukemia cells. Sci. Rep. 2020, 10, 4936. [Google Scholar] [CrossRef]
- Albanese, A.; Walkey, C.D.; Olsen, J.B.; Guo, H.; Emili, A.; Chan, W.C. Secreted biomolecules alter the biological identity and cellular interactions of nanoparticles. ACS Nano 2014, 24, 5515–5526. [Google Scholar] [CrossRef]
- Lora Huang, L.C.; Chang, H.C. Adsorption and Immobilization of Cytochrome c on Nanodiamonds. Langmuir 2004, 20, 5879–5884. [Google Scholar] [CrossRef]
- Hemelaar, S.R.; Nagl, A.; Bigot, F.; Rodriguez-García, M.M.; de Vries, M.P.; Chipaux, M.; Schirhagl, R. The interaction of fluorescent nanodiamond probes with cellular media. Microchim. Acta 2017, 184, 1001–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyer, J.K.; Dickey, A.; Rouhani, P.; Kaul, A.; Govindaraju, N.; Singh, R.N.; Kaul, R. Nanodiamonds facilitate killing of intracellular uropathogenic E. coli in an in vitro model of urinary tract infection pathogenesis. PLoS ONE 2018, 13, e0191020. [Google Scholar] [CrossRef] [Green Version]
- Afonso, S.G.; Enriquez De Salamanca, R.; Batlle, A.M.; Del, C. The photodynamic and non-photodynamic actions of porphyrins. Braz. J. Med. Biol. Res. 1999, 32, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Tada, D.B.; Suraniti, E.; Rossi, L.M.; Leite, C.A.P.; Oliveira, C.S.; Tumolo, T.C.; Calemczuk, R.; Livache, T.; Baptista, M.S. Effect of Lipid Coating on the Interaction Between Silica Nanoparticles and Membranes. J. Biomed. Nanotechnol. 2014, 10, 519–528. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO). ISO 10993-5: Biological Evaluation of Medical Devices—Tests for In Vitro Cytotoxicity; ISO: Geneve, Switzerland, 2009. [Google Scholar]
- Chipaux, M.; Van der Laan, K.J.; Hemelaar, S.R.; Hasani, M.; Zheng, T.; Schirhagl, R. Nanodiamonds and Their Applications in Cells. Small 2018, 14, 1704263. [Google Scholar] [CrossRef] [PubMed]
- Reina, G.; Gismondi, A.; Carcione, R.; Nanni, V.; Peruzzi, C.; Angjellari, M.; Chau, N.D.Q.; Canini, A.; Terranova, M.L.; Tamburri, E. Oxidized and amino-functionalized nanodiamonds as shuttle for delivery of plant secondary metabolites: Interplay between chemical affinity and bioactivity. Appl. Surf. Sci. 2019, 470, 744–754. [Google Scholar] [CrossRef]
- Wang, P.; Su, W.; Ding, X. Control of nanodiamond-doxorubicin drug loading and elution through optimized compositions and release environments. Diam. Relat. Mater. 2018, 88, 43–50. [Google Scholar] [CrossRef]
- Tinwala, H.; Wairkar, S. Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for theranostics. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 97, 913–931. [Google Scholar] [CrossRef]
- Cao, W.; Peng, X.; Chen, X.; Wang, X.; Jin, F.; Li, Q.; Chen, H.; Jiang, C.; Ye, Z.; Xing, X. Facile synthesis of cationic polymer functionalized nanodiamond with high dispersity and antibacterial activity. J. Mater Sci. 2017, 52, 1856–1867. [Google Scholar] [CrossRef]
- Hsieh, Y.-H.; Liu, K.-K.; Sulake, R.S.; Chao, J.-I.; Chen, C. Microwave-assisted efficient conjugation of nanodiamond and paclitaxel. Bioorganic Med. Chem. Lett. 2015, 25, 2074–2077. [Google Scholar] [CrossRef] [PubMed]
- Reina, G.; Zhao, L.; Bianco, A.; Komatsu, N. Chemical Functionalization of Nanodiamonds: Opportunities and Challenges Ahead. Angew. Chem. Int. Ed. Engl. 2019, 58, 17918–17929. [Google Scholar] [CrossRef]
- Zhao, L.; Takimoto, T.; Ito, M.; Kitagawa, N.; Kimura, T.; Komatsu, N. Chromatographic separation of highly soluble diamond nanoparticles prepared by polyglycerol grafting. Angew. Chem. Int. Ed. Engl. 2011, 50, 1388–1392. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, Y.-H.; Qin, H.; Abe, S.; Akasaka, T.; Chano, T.; Watari, F.; Kimura, T.; Komatsu, N.; Chen, X. Platinum on Nanodiamond: A Promising Prodrug Conjugated with Stealth Polyglycerol, Targeting Peptide and Acid-Responsive Antitumor Drug. Adv. Funct. Mater. 2014, 24, 5348–5357. [Google Scholar] [CrossRef]
- Manka, J.S.; Chugh, D.B.; Lawrence, D.S. The free base of tetraphenylporphine serves as a host for alkali metal salts. Tetrahedron Lett. 1990, 31, 5873–5876. [Google Scholar] [CrossRef]
- Üngördü, A. Electronic, optical, and charge transfer properties of porphyrin and metallated porphyrins in different media. Int. J. Quantum Chem. 2020, e26128. [Google Scholar] [CrossRef]
- Webb, M.J.; Bampos, N. Noncovalent interactions in acid–porphyrin complexes. Chem. Sci. 2012, 3, 2351–2366. [Google Scholar] [CrossRef]
- Openda, Y.I.; Nyokong, T. Detonation nanodiamonds-phthalocyanine photosensitizers with enhanced photophysicochemical properties and effective photoantibacterial activity. Photodiagn. Photodyn. Ther. 2020, 32, 102072. [Google Scholar] [CrossRef] [PubMed]
- Gismondi, A.; Rein, G.; Orlanducci, S.; Mizzoni, F.; Gay, S.; Terranova, M.L.; Canini, A. Nanodiamonds coupled with plant bioactive metabolites: A nanotech approach for cancer therapy. Biomaterials 2015, 38, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.S.; Sun, D.S.; Lin, Y.C.; Cheng, C.L.; Hung, S.C.; Chen, P.K.; Yang, J.H.; Chang, H.H. Nanodiamonds protect skin from ultraviolet B-induced damage in mice. J. Nanobiotechnol. 2015, 13, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Solvent | D (nm) |
---|---|
Water | 58 ± 1 |
Mueller Hinton Medium | 58 ± 2 |
DMEM Medium | 82 ± 3 * |
Inhibition E. coli Growth (%) | ||
---|---|---|
Incubation Time (h) | Without Irradiation | With Irradiation |
0 | 24 ± 14 | 24 ± 7 |
0.5 | 33 ± 7 | 29 ± 3 |
1 | 36 ± 6 | 43 ± 3 |
1.5 | 42 ± 7 | 50 ± 3 |
2 | 42 ± 6 | 56 ± 4 |
2.5 | 39 ± 8 | 46 ±4 |
3 | 40 ± 8 | 47 ± 3 |
5 | 32 ±8 | 50 ± 3 |
7 | 33 ± 6 | 37 ± 4 |
24 | 27 ± 6 | 31 ± 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hurtado, C.R.; Hurtado, G.R.; Cena, G.L.d.; Queiroz, R.C.; Silva, A.V.; Diniz, M.F.; Santos, V.R.d.; Trava-Airoldi, V.; Baptista, M.d.S.; Tsolekile, N.; et al. Diamond Nanoparticles-Porphyrin mTHPP Conjugate as Photosensitizing Platform: Cytotoxicity and Antibacterial Activity. Nanomaterials 2021, 11, 1393. https://doi.org/10.3390/nano11061393
Hurtado CR, Hurtado GR, Cena GLd, Queiroz RC, Silva AV, Diniz MF, Santos VRd, Trava-Airoldi V, Baptista MdS, Tsolekile N, et al. Diamond Nanoparticles-Porphyrin mTHPP Conjugate as Photosensitizing Platform: Cytotoxicity and Antibacterial Activity. Nanomaterials. 2021; 11(6):1393. https://doi.org/10.3390/nano11061393
Chicago/Turabian StyleHurtado, Carolina Ramos, Gabriela Ramos Hurtado, Gabrielle Lupeti de Cena, Rafaela Campos Queiroz, Alexandre Vieira Silva, Milton Faria Diniz, Verônica Ribeiro dos Santos, Vladimir Trava-Airoldi, Maurício da Silva Baptista, Ncediwe Tsolekile, and et al. 2021. "Diamond Nanoparticles-Porphyrin mTHPP Conjugate as Photosensitizing Platform: Cytotoxicity and Antibacterial Activity" Nanomaterials 11, no. 6: 1393. https://doi.org/10.3390/nano11061393
APA StyleHurtado, C. R., Hurtado, G. R., Cena, G. L. d., Queiroz, R. C., Silva, A. V., Diniz, M. F., Santos, V. R. d., Trava-Airoldi, V., Baptista, M. d. S., Tsolekile, N., Oluwafemi, O. S., Conceição, K., & Tada, D. B. (2021). Diamond Nanoparticles-Porphyrin mTHPP Conjugate as Photosensitizing Platform: Cytotoxicity and Antibacterial Activity. Nanomaterials, 11(6), 1393. https://doi.org/10.3390/nano11061393