Low-Cost 400 Gbps DR4 Silicon Photonics Transmitter for Short-Reach Datacenter Application
Abstract
:1. Introduction
2. MACOM’s Silicon Photonics Roadmap
3. Modulator Design and Characterization
4. DR4 Transmitter Test
5. Summary and Prospect
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abrams, N.C.; Cheng, Q.; Glick, M.; Jezzini, M.; Morrissey, P.; O’Brein, P.; Bergman, K. Silicon Photonic 2.5D Multi-Chip Module Transceiver for High-Performance Data Centers. J. Lightw. Technol. 2020, 38, 3346–3357. [Google Scholar] [CrossRef]
- Pitris, S.; Moralis-Pegios, M.; Alexoudi, T.; Ban, Y.; Heyn, P.D.; Campenhout, J.V.; Lambrecht, J.; Rmon, H.; Yin, X.; Bauwelinck, J.; et al. O-Band Silicon Photonic Transmitters for Datacom and Computercom Interconnects. J. Lightw. Technol. 2019, 37, 5140–5148. [Google Scholar] [CrossRef]
- Liljeberg, T. Silicon photonics and the future of optical connectivity in the data center. In Proceedings of the IEEE Optical Interconnects Conference, Santa Fe, NM, USA, 5–7 June 2017. [Google Scholar]
- Hayashi, T.; Mekis, A.; Nakanishi, T.; Peterson, M.; Sahni, S.; Sun, P.; Freyling, S.; Armijo, G.; Sohn, C.; Foltz, D.; et al. End-to-End Multi-Core Fibre Transmission Link Enabled by Silicon Photonics Transceiver with Grating Coupler Array. In Proceedings of the European Conference on Optical Communication, Gothenburg, Sweden, 17–21 September 2017. [Google Scholar]
- 100G PSM4 MSA. Available online: http://www.psm4.org/ (accessed on 28 May 2021).
- 100G Lambda MSA. Available online: https://100glambda.com/ (accessed on 28 May 2021).
- Zhang, H.; Li, M.; Zhang, Y.; Zhang, D.; Liao, Q.; He, J.; Hu, S.; Zhang, B.; Xiao, X.; Qi, N.; et al. 800 Gbit/s transmission over 1 km single-mode fiber using a four-channel silicon photonic transmitter. Photonics Res. 2020, 8, 1776–1782. [Google Scholar] [CrossRef]
- Ahmed, A.H.; Moznine, A.E.; Lim, D.; Ma, Y.; Rylyakov, A.; Shekhar, S. A Dual-Polarization Silicon-Photonic Coherent Transmitter Supporting 552 Gb/s/wavelength. IEEE J. Solid-State Circuits 2020, 55, 2597–2608. [Google Scholar] [CrossRef]
- Tanaka, Y. High-speed and large-capacity integrated silicon photonics technologies. In Proceedings of the Proceedings SPIE 11308, Metro and Data Center Optical Networks and Short-Reach Links III, San Francisco, CA, USA, 31 January 2020. [Google Scholar]
- Bernabé, S.; Wilmart, Q.; Hasharoni, K.; Hassan, K.; Thonnart, Y.; Tissier, P.; Désières, Y.; Olivier, S.; Tekin, T.; Szelag, B. Silicon photonics for terabit/s communication in data centers and exascale computers. Solid State Electron. 2021, 179, 1–25. [Google Scholar] [CrossRef]
- Saarela, A.; Melanen, P.; Vilokkinen, V.; Kuusela, L.; Uusimaa, P.; Sipilä, P.; Ulkuniemi, R.; Mäkinen, O. High temperature AlGaInAs-based 25g DML-DFB lasers operating in O-band for data center use. In Proceedings of the Proceedings SPIE 11712, Metro and Data Center Optical Networks and Short-Reach Links IV, online, 5 March 2021. [Google Scholar]
- Che, D.; Matsui, Y.; Schatz, R.; Rodes, R.; Khan, F.; Kwakernaak, M.; Sudo, T. 200-Gb/s Direct Modulation of a 50-GHz Class Laser With Advanced Digital Modulations. J. Lightw. Technol. 2021, 39, 845–852. [Google Scholar] [CrossRef]
- Lin, Y.H.; Lin, H.S.; Wu, W.L.; Tsai, C.T.; Cheng, C.H.; Shih, T.T.; Lin, G.R. 100-Gbit/s/λ EML Transmitter and PIN-PD+TIA Receiver-Based Inter-Data Center Link. J. Lightw. Technol. 2020, 38, 2144–2151. [Google Scholar] [CrossRef]
- Naoe, K.; Nakajima, T.; Nakai, Y.; Yamaguchi, Y.; Sakuma, Y.; Sasada, N. Advanced InP laser technologies for 400G and beyond hyperscale interconnections. In Proceedings of the Proceedings SPIE 11356, Semiconductor Lasers and Laser Dynamics IX, online, 1 April 2020. [Google Scholar]
- Liao, L.; Samara-Rubio, D.; Morse, M.; Liu, A.; Hodge, D.; Rubin, D.; Keil, U.; Frank, T. High speed silicon Mach-Zehnder modulator. Opt. Express 2005, 13, 3129–3135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, X.; Liow, T.; Song, J.; Luo, S.; Fang, Q.; Yu, M.; Lo, G. 50-Gb/s silicon optical modulator with traveling-wave electrodes. Opt. Express 2013, 21, 12776–12782. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhou, L.; Wang, T.; Wong, C.; Zhou, Y.; Yang, R.; Li, Y.; Chen, J. Optimized silicon QPSK modulator with 64-Gb/s modulation speed. IEEE Photonics J. 2015, 7, 1–6. [Google Scholar] [CrossRef]
- Ishikura, N.; Goi, K.; Zhu, H.; Illarionov, M.; Ishihara, H.; Oka, A.; Oda, T.; Masuko, K.; Ori, T.; Ogawa, K.; et al. Transmission Characteristics of 32-Gbaud PDM IQ Monolithic Silicon Modulator Operating with 2-VPPD Drive Voltage. In Proceedings of the European Conference on Optical Communication, Dusseldorf, Germany, 18–22 September 2016. [Google Scholar]
- Xiao, X.; Li, M.; Wang, L.; Chen, D.; Yang, Q.; Yu, S. High speed silicon photonic modulators. In Proceedings of the Optical Fiber Communications Conference and Exhibition, Los Angeles, CA, USA, 19–23 March 2017. [Google Scholar]
- Rahim, A.; Hermans, A.; Wohlfeil, B.; Petousi, D.; Kuyken, B.; Thourhout, D.V.; Baets, R.G. Taking silicon photonics modulators to a higher performance level: State-of-the-art and a review of new technologies. Adv. Photonics 2021, 3, 024003. [Google Scholar] [CrossRef]
- Zhang, K.; Zhuge, Q.; Xin, H.; Hu, W.; Plant, D. Performance comparison of DML, EML and MZM in dispersion-unmanaged short reach transmissions with digital signal processing. Opt. Express 2018, 26, 34288–34304. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Debregeas, H.; Nguyen, T.D.H.; Lelarge, F.; Gentner, J. Uncooled 1.55μm Electro-Absorption Modulated Laser at 28Gb/s with high power and low Vpp for datacom. In Proceedings of the European Conference on Optical Communication, Dublin, Ireland, 22–26 September 2019. [Google Scholar]
- Zhong, K.; Mo, J.; Grzybowski, R.; Lau, A.P.T. 400 Gbps PAM-4 Signal Transmission Using a Monolithic Laser Integrated Silicon Photonics Transmitter. In Proceedings of the Optical Fiber Communication Conference and Exhibition, San Diego, CA, USA, 3–7 March 2019. [Google Scholar]
- Behfar, A.; Schremer, A.; Hwang, J.; Stagarescu, C.; Morrow, A.; Green, M. Etched facet technology for GaN and blue lasers. In Proceedings of the SPIE 6121, Gallium Nitride Materials and Devices, San Jose, CA, USA, 3 March 2006. [Google Scholar]
- Grzybowski, R.; Martin, A. MACOM’s L-PIC™ (Laser Integrated PIC) Platform Using Self-Aligned Etch Facet Technology (SAEFT™) For Data Center Networks. In Proceedings of the Photonic Networks and Devices, New Orleans, LA, USA, 24–27 July 2017; p. NeW1B-4. [Google Scholar]
- Benedikovic, D.; Virot, L.; Aubin, G.; Hartmann, J.; Amar, F.; Roux, X.L.; Alonso-Ramos, C.; Cassan, E.; Marris-Morini, D.; Fédéli, J.; et al. Silicon–germanium receivers for short-wave-infrared optoelectronics and communications. Nanophotonics 2020, 10, 1059–1079. [Google Scholar] [CrossRef]
- Guha, B.; Kyotoku, B.B.C.; Lipson, M. CMOS-compatible athermal silicon microring resonators. Opt. Express 2010, 18, 3487–3493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Balamurugan, G.; Sakib, M.; Kumar, R.; Jayatilleka, H.; Rong, H.; Jaussi, J.; Casper, B. 12.1 A 3D-Integrated Microring-Based 112Gb/s PAM-4 Silicon-Photonic Transmitter with Integrated Nonlinear Equalization and Thermal Control. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 16–20 February 2020. [Google Scholar]
- Zhang, W.; Debnath, K.; Chen, B.; Li, K.; Liu, S.; Ebert, M.; Reynolds, J.D.; Khokhar, A.Z.; Littlejohns, C.; Byers, J.; et al. High Bandwidth Capacitance Efficient Silicon MOS Modulator. J. Lightw. Technol. 2021, 39, 201–207. [Google Scholar] [CrossRef]
- QSFP-DD MSA Group. Available online: http://www.qsfp-dd.com/ (accessed on 28 May 2021).
- Minkenberg, C.; Krishnaswamy, R.; Zilkie, A.; Nelson, D. Co-packaged datacenter optics: Opportunities and challenges. IET Optoelectron. 2020, 15, 77–91. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Anderson, S.; Karfelt, N.; Jiang, L.; Li, Y.; Boeck, R.; Yamazaki, H.; Wang, M.; Kankipati, R.; Grzybowski, R. Low-Cost 400 Gbps DR4 Silicon Photonics Transmitter for Short-Reach Datacenter Application. Nanomaterials 2021, 11, 1941. https://doi.org/10.3390/nano11081941
Zhu H, Anderson S, Karfelt N, Jiang L, Li Y, Boeck R, Yamazaki H, Wang M, Kankipati R, Grzybowski R. Low-Cost 400 Gbps DR4 Silicon Photonics Transmitter for Short-Reach Datacenter Application. Nanomaterials. 2021; 11(8):1941. https://doi.org/10.3390/nano11081941
Chicago/Turabian StyleZhu, Haike, Sean Anderson, Nick Karfelt, Lingjun Jiang, Yunchu Li, Robert Boeck, Hiroyuki Yamazaki, Meng Wang, Raju Kankipati, and Richard Grzybowski. 2021. "Low-Cost 400 Gbps DR4 Silicon Photonics Transmitter for Short-Reach Datacenter Application" Nanomaterials 11, no. 8: 1941. https://doi.org/10.3390/nano11081941
APA StyleZhu, H., Anderson, S., Karfelt, N., Jiang, L., Li, Y., Boeck, R., Yamazaki, H., Wang, M., Kankipati, R., & Grzybowski, R. (2021). Low-Cost 400 Gbps DR4 Silicon Photonics Transmitter for Short-Reach Datacenter Application. Nanomaterials, 11(8), 1941. https://doi.org/10.3390/nano11081941