Control over the Surface Properties of Zinc Oxide Powders via Combining Mechanical, Electron Beam, and Thermal Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Sample Study
3. Results and Discussion
3.1. Scanning Electron Microscope and X-ray Diffraction
3.2. X-ray Photoelectron Spectroscopy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meng, F.; Shi, X.; Yuan, Z.; Ji, H.; Qin, W.; Shen, Y.; Xing, C. Detection of four alcohol homologue gases by ZnO gas sensor in dynamic interval temperature modulation mode. Sens. Actuators B 2022, 350, 130867. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Salla, S.; Senthil, R.A.; Nithyadharseni, P.; Madankumar, A.; Arunachalam, P.; Maiyalagan, T.; Kim, H.S. A review on ZnO nanostructured materials: Energy, environmental and biological applications. Nanotechnology 2019, 30, 392001. [Google Scholar] [CrossRef] [PubMed]
- Hewlett, R.M.; McLachlan, M.A. Surface structure modification of ZnO and the impact on electronic properties. Adv. Mater. 2016, 28, 3893–3921. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.L.; Tok, A.I.Y.; Boey, F.Y.C.; Zeng, X.T.; Zhang, X.H. Surface modification of ZnO nanocrystals. Appl. Surf. Sci. 2007, 253, 5473–5479. [Google Scholar] [CrossRef]
- Sapkota, R.; Duan, P.; Kumar, T.; Venkataraman, A.; Papadopoulos, C. Thin Film Gas Sensors Based on Planetary Ball-Milled Zinc Oxide Nanoinks: Effect of Milling Parameters on Sensing Performance. Appl. Sci. 2021, 11, 9676. [Google Scholar] [CrossRef]
- Singh, J.; Sharma, S.; Soni, S.; Sharma, S.; Singh, R.C. Influence of different milling media on structural, morphological and optical properties of the ZnO nanoparticles synthesized by ball milling process. Mater. Sci. Semicond. Process. 2019, 98, 29–38. [Google Scholar] [CrossRef]
- Abdolhoseinzadeh, A.; Sheibani, S. Enhanced photocatalytic performance of Cu2O nano-photocatalyst powder modified by ball milling and ZnO. Adv. Powder Technol. 2020, 31, 40–50. [Google Scholar] [CrossRef]
- Kim, J.H.; Mirzaei, A.; Kim, H.W.; Wu, P.; Kim, S.S. Design of supersensitive and selective ZnO-nanofiber-based sensors for H2 gas sensing by electron-beam irradiation. Sens. Actuators B 2019, 293, 210–223. [Google Scholar] [CrossRef]
- Hasabeldaim, E.H.H.; Ntwaeaborwa, O.M.; Kroon, R.E.; Coetsee-Hugo, E.; Swart, H.C. Pulsed laser deposition of a ZnO: Eu3+ thin film: Study of the luminescence and surface state under electron beam irradiation. Appl. Surf. Sci. 2020, 502, 144281. [Google Scholar] [CrossRef]
- Lee, S.; Park, J.H.; Kim, W.K.; Dal Park, H.; Lee, B.C.; Moriyoshi, C.; Jeong, S.Y. Control of magneto-transport characteristics of Co-doped ZnO by electron beam irradiation. RSC Adv. 2016, 6, 41067–41073. [Google Scholar] [CrossRef]
- Pronin, I.A.; Yakushova, N.D.; Averin, I.A.; Karmanov, A.A.; Komolov, A.S.; Sychev, M.M.; Moshnikov, V.A.; Terukov, E.I. Chemical Binding of Carbon Dioxide on Zinc Oxide Powders Prepared by Mechanical Milling. Inorg Mater. 2021, 57, 1140–1144. [Google Scholar] [CrossRef]
- Pronin, I.A.; Averin, I.A.; Yakushova, N.D.; Vishnevskaya, G.V.; Sychov, M.M.; Moshnikov, V.A.; Terukov, E.I. Investigation of milling processes of semiconductor zinc oxide nanostructured powders by X-ray phase analysis. J. Phys. Conf. Ser. 2017, 917, 032019. [Google Scholar] [CrossRef]
- Komolov, A.S.; Schaumburg, K.; Møller, P.J.; Monakhov, V.V. Characterization of Conducting Molecular Films on Silicon: Auger Electron Spectroscopy, X-Ray Photoelectron Spectroscopy, Atomic Force Microscopy and Surface Photovoltage. Appl. Surf. Sci. 1999, 142, 591–597. [Google Scholar] [CrossRef]
- Antony, A.; Poornesh, P.; Kityk, I.V.; Myronchuk, G.; Sanjeev, G.; Petwal, V.C.; Verma, V.P.; Dwivedi, J. A study of 8 MeV e-beam on localized defect states in ZnO nanostructures and its role on photoluminescence and third harmonic generation. J. Lumin. 2019, 207, 321–332. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Fang, D. A review on C1s XPS-spectra for some kinds of carbon materials. Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 1048–1058. [Google Scholar] [CrossRef]
- Peleš, A.; Pavlović, V.P.; Filipović, S.; Obradović, N.; Mančić, L.; Krstić, J.; Mitrić, M.; Vlahović, B.; Rašić, G.; Kosanović, D.; et al. Structural investigation of mechanically activated ZnO powder. J. Alloys Compd. 2015, 648, 971–979. [Google Scholar] [CrossRef] [Green Version]
- Tsai, H.Y. Characteristics of ZnO thin film deposited by ion beam sputter. J. Mater. Process. Technol. 2007, 192, 55–59. [Google Scholar] [CrossRef]
- Yun, E.J.; Jung, J.W.; Han, Y.H.; Kim, M.W.; Lee, B.C. Effect of high-energy electron beam irradiation on the properties of ZnO thin films prepared by magnetron sputtering. J. Appl. Phys. 2009, 105, 123509. [Google Scholar] [CrossRef]
- Kayaci, F.; Vempati, S.; Donmez, I.; Biyikliab, N.; Uyar, T. Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: A bottom-up approach to control defect density. Nanoscale 2014, 6, 10224–10234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Liu, H.; Wang, J.; Yao, S.; Cheng, X.; Boughton, R.I. Influence of annealing on ZnO films grown by metal–organic chemical vapor deposition. Mater. Lett. 2004, 58, 3630–3633. [Google Scholar] [CrossRef]
Sample | BE (Zn2p3/2) | BE (O1s) | BE (C1s) |
---|---|---|---|
1 | 1021.35 ± 0.1 eV | 530.05 ± 0.1 eV | 284.80 ± 0.1 eV |
2 | 1021.05 ± 0.1 eV | 529.90 ± 0.1 eV | 284.80 ± 0.1 eV |
3 | 1022.10 ± 0.1 eV | 530.55 ± 0.1 eV | 284.80 ± 0.1 eV |
4 | 1021.38 ± 0.1 eV | 530.13 ± 0.1 eV | 284.80 ± 0.1 eV |
Sample | Zn(lat.)/O(lat.) | WZn, eV |
---|---|---|
1 | 2.2 ± 15% | 1.86 ± 0.01 eV |
2 | 1.6 ± 15% | 1.80 ± 0.01 eV |
3 | 1.8 ± 15% | 1.85 ± 0.01 eV |
4 | 1.9 ± 15% | 1.92 ± 0.01 eV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pronin, I.A.; Averin, I.A.; Karmanov, A.A.; Yakushova, N.D.; Komolov, A.S.; Lazneva, E.F.; Sychev, M.M.; Moshnikov, V.A.; Korotcenkov, G. Control over the Surface Properties of Zinc Oxide Powders via Combining Mechanical, Electron Beam, and Thermal Processing. Nanomaterials 2022, 12, 1924. https://doi.org/10.3390/nano12111924
Pronin IA, Averin IA, Karmanov AA, Yakushova ND, Komolov AS, Lazneva EF, Sychev MM, Moshnikov VA, Korotcenkov G. Control over the Surface Properties of Zinc Oxide Powders via Combining Mechanical, Electron Beam, and Thermal Processing. Nanomaterials. 2022; 12(11):1924. https://doi.org/10.3390/nano12111924
Chicago/Turabian StylePronin, Igor A., Igor A. Averin, Andrey A. Karmanov, Nadezhda D. Yakushova, Alexey S. Komolov, Eleonora F. Lazneva, Maxim M. Sychev, Vyacheslav A. Moshnikov, and Ghenadii Korotcenkov. 2022. "Control over the Surface Properties of Zinc Oxide Powders via Combining Mechanical, Electron Beam, and Thermal Processing" Nanomaterials 12, no. 11: 1924. https://doi.org/10.3390/nano12111924
APA StylePronin, I. A., Averin, I. A., Karmanov, A. A., Yakushova, N. D., Komolov, A. S., Lazneva, E. F., Sychev, M. M., Moshnikov, V. A., & Korotcenkov, G. (2022). Control over the Surface Properties of Zinc Oxide Powders via Combining Mechanical, Electron Beam, and Thermal Processing. Nanomaterials, 12(11), 1924. https://doi.org/10.3390/nano12111924