Highly Regioselective Synthesis of Bisadduct[C70] Additive toward the Enhanced Performance of Perovskite Solar Cells
Abstract
:1. Introduction
2. Experiment
2.1. Characterization Techniques
2.2. The Synthesis of 1, 2-Bis(Azidomethyl)-Benzene
2.3. The Synthesis of 2
2.4. Crystal Growth and Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Z.L.; Yang, D.L.; Zhao, X.L.; Zhang, T.; Zhang, J.D.; Yang, X.N. Achieving an Efficiency Exceeding 10% for Fullerene-based Polymer Solar Cells Employing a Thick Active Layer via Tuning Molecular Weight. Adv. Funct. Mater. 2018, 28, 1705257. [Google Scholar] [CrossRef]
- Scharber, M.C. On the Efficiency Limit of Conjugated Polymer:Fullerene-Based Bulk Heterojunction Solar Cells. Adv. Mater. 2016, 28, 1994–2001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heumueller, T.; Mateker, W.R.; Distler, A.; Fritze, U.F.; Cheacharoen, R.R.; Nguyen, W.H.; Biele, M.; Salvador, M.; Delius, M.; Egelhaaf, H.J.; et al. Morphological and electrical control of fullerene dimerization determines organic photovoltaic stability. Energy Environ. Sci. 2016, 9, 247–256. [Google Scholar] [CrossRef] [Green Version]
- Saeed, M.A.; Cheng, S.; Biswas, S.; Kim, S.H.; Kwon, S.-K.; Kim, H.; Kim, Y.-H.; Shim, J.W. Remarkably high performance of organic photovoltaic devices with 3, 9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5, 5, 11, 11-tetrakis(4-hexyl meta-phenyl)-dithieno[2, 3-d: 2′, 3′-d′]-s-indaceno[1, 2-b: 5, 6-b′]dithiophene)-ethylhexyloxy] photoactive acceptor under halogen light illumination. J. Power Sources 2022, 518, 230782. [Google Scholar]
- Kim, S.H.; Park, C.H.; Saeed, M.A.; Ko, D.-H.; Lee, J.-H.; Shim, J.W. β-cyclodextrin–polyacryloyl hydrazide-based surface modification for efficient electron-collecting electrodes of indoor organic photovoltaics, J. Mater. Res. Technol. 2022, 16, 1659–1666. [Google Scholar] [CrossRef]
- Chiang, C.H.; Wu. C. G. Bulk heterojunction perovskite–PCBM solar cells with high fill factor. Nat. Photonics 2016, 10, 196–200. [Google Scholar] [CrossRef]
- Oseni, S.O.; Kaviyarasu, K.; Maaza, M.; Sharma, G.; Pellicane, G.; Mola, G.T. ZnO: CNT assisted charge transport in PTB7: PCBM blend organic solar cell. J. Alloy. Compd. 2018, 748, 216–222. [Google Scholar] [CrossRef]
- Zhang, F.; Shi, W.; Luo, J.; Pellet, N.; Yi, C.; Li, X.; Zhao, X.; Dennis, T.J.S.; Li, X.; Wang, S.; et al. Isomer-Pure Bis-PCBM-Assisted Crystal Engineering of Perovskite Solar Cells Showing Excellent Efficiency and Stability. Adv. Mater. 2017, 29, 1606806. [Google Scholar] [CrossRef]
- Ceron, M.R.; Izquierdo, M.; Aghabali, A.; Valdez, J.A.; Ghiassi, K.B.; Olmstead, M.M.; Balch, A.L.; Wudl, F.; Echegoyen, L. Tethered Bisadducts of C60 and C70 with Addends on a Common Hexagonal Face and a 12-Membered Hole in the Fullerene Cage. J. Am. Chem. Soc. 2015, 137, 7502–7508. [Google Scholar] [CrossRef]
- Cerón, M.R.; Izquierdo, M.; Pi, Y.; Atehortffla, S.L.; Echegoyen, L. Tether-Directed Bisfunctionalization Reactions of C60 and C70. Chem. Eur. J. 2015, 21, 7881–7885. [Google Scholar] [CrossRef]
- Ceron, M.R.; Izquierdo, M.; Aghabali, A.; Vogel, S.P.; Olmstead, M.M.; Balch, A.L.; Echegoyen, L. Tethered bis-6pyrrolidine additions to C70: Some unexpected and new regioisomers. Carbon 2016, 105, 394–400. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Cui, C.; Wang, H.; Li, Y. High-Efficiency Polymer Solar Cells Based on Poly(3-pentylthiophene) with Indene-C70 Bisadduct as an Acceptor. Adv. Energy Mater. 2012, 2, 966–969. [Google Scholar] [CrossRef]
- Wong, W.W.H.; Subbiah, J.; White, J.M.; Seyler, H.; Zhang, B.; Jones, D.J.; Holmes, A.B. Single Isomer of Indene-C70 Bisadduct-Isolation and Performance in Bulk Heterojunction Solar Cells. Chem. Mater. 2014, 26, 1686–1689. [Google Scholar] [CrossRef]
- Tao, R.; Umeyama, T.; Higashino, T.; Koganezawa, T.; Imahori, H. Synthesis and Isolation of cis-2 Regiospecific Ethylene-Tethered Indene Dimer–[70]Fullerene Adduct for Polymer Solar Cell Applications. ACS Appl. Mater. Interfaces 2015, 7, 16676–16685. [Google Scholar] [CrossRef]
- Meng, X.; Zhao, G.; Xu, Q.; Tan, Z.A.; Zhang, Z.; Jiang, L.; Shu, C.; Wang, C.; Li, Y. Effects of Fullerene Bisadduct Regioisomers on Photovoltaic Performance. Adv. Funct. Mater. 2014, 24, 158–163. [Google Scholar] [CrossRef]
- Tao, R.; Umeyama, T.; Kurotobi, K.; Imahori, H. Effects of Alkyl Chain Length and Substituent Pattern of Fullerene Bis-Adducts on Film Structures and Photovoltaic Properties of Bulk Heterojunction Solar Cells. ACS Appl. Mater. Interfaces 2014, 6, 17313–17322. [Google Scholar] [CrossRef]
- van Eis, M.J.; Alvarado, R.J.; Echegoyen, L.; Seiler, P.; Diederich, F. First tether-directed regioselective bis-functionalisation of C70: Effects of cation complexation on the redox properties of diastereoisomeric fullerene crown ether conjugates. Chem. Commun. 2000, 19, 1859–1860. [Google Scholar] [CrossRef]
- van Eis, M.J.; Nunez, I.P.; Muslinkina, L.A.; Alvarado, R.J.; Pretsch, E.; Echegoyen, L.; Diederich, F. Sandwiching C70 between two crown ether-bound cations: Regioselective synthesis, electrochemistry and cation binding properties of C70 bis-crown ether conjugates. J. Chem. Soc., Perkin Trans. 2001, 2, 1890–1892. [Google Scholar] [CrossRef]
- van Eis, M.J.; Seiler, P.; Muslinkina, L.A.; Badertscher, M.; Pretsch, E.; Diederich, F.; Alvarado, R.J.; Echegoyen, L.; Nunez, I.P. Supramolecular Fullerene Chemistry: A Comprehensive Study of Cyclophane-Type Mono- and Bis-Crown Ether Conjugates of C70. Helv. Chim. Acta 2002, 85, 2009–2055. [Google Scholar] [CrossRef]
- Chen, M.Q.; Bao, L.P.; Peng, P.; Zheng, S.S.; Xie, Y.P.; Lu, X. Rigid Tether Directed Regioselective Synthesis and Crystallographic Characterization of Labile 1,2,3,4-Bis(triazolino)[60]-fullerene and Its Thermolized Derivatives. Angew. Chem. Int. Ed. 2016, 55, 11887–11891. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Neti, V.S.P.K.; Ceron, M.R.; Duarte-Ruiz, A.; Olmstead, M.M.; Balch, A.L.; Echegoyen, L. High-yield, regiospecific bis-functionalization of C70 using a Diels–Alder reaction in molten anthracene. Chem. Commun. 2014, 50, 10584–10587. [Google Scholar] [CrossRef]
- Herrmann, A.; Ruttimann, M.W.; Gibtner, T.; Thilgen, C.; Diederich, F.; Mordasini, T.; Thiel, W. Achiral and Chiral Higher Adducts of C70 by Bingel Cyclopropanation. Helv. Chim. Acta 1999, 82, 261. [Google Scholar] [CrossRef]
- Foley, B.J.; Girard, J.; Sorenson, B.A.; Chen, A.Z.; Niezgoda, J.S.; Alpert, M.R.; Harper, A.F.; Smilgies, D.-M.; Clancy, P.; Saidi, W.A.; et al. Controlling nucleation, growth, and orientation of metal halide perovskite thin films with rationally selected additives. J. Mater. Chem. A 2017, 5, 113–123. [Google Scholar] [CrossRef]
- Zong, Y.; Zhou, Y.; Zhang, Y.; Li, Z.; Zhang, L.; Ju, M.-G.; Chen, M.; Pang, S.; Zeng, X.C.; Padture, N.P. Continuous Grain-Boundary Functionalization for High-Efficiency Perovskite Solar Cells with Exceptional Stability. Chem 2018, 4, 1404–1415. [Google Scholar] [CrossRef] [Green Version]
- Zhen, J.M.; Zhou, W.R.; Chen, M.Q.; Li, B.R.; Jia, L.B.; Wang, M.T.; Yang, S.F. Pyridine-functionalized fullerene additive enabling coordination interactions with CH3NH3PbI3 perovskite towards highly efficient bulk heterojunction solar cells. J. Mater. Chem. A 2019, 7, 2754–2763. [Google Scholar] [CrossRef]
- Xu, J.; Buin, A.; Ip, A.H.; Li, W.; Voznyy, O.; Comin, R.; Yuan, M.; Jeon, S.; Ning, Z.; McDowell, J.J.; et al. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Commun. 2015, 6, 7081. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
Weight Ratios (2:PbI2) a | Voc (V) | Jsc (mA·cm−2) | FF (%) | PCE (%) | Rsh (Ω·cm2) c | Rsh (Ω·cm2) c | |
---|---|---|---|---|---|---|---|
Average b | Best | ||||||
Control | 1.07 ± 0.01 | 22.15 ± 0.21 | 71.41 ± 0.88 | 16.99 ± 0.18 | 17.37 | 11.0 | 10,153.6 |
0 wt% | 1.07 ± 0.01 | 22.23 ± 0.20 | 71.60 ± 1.45 | 17.07 ± 0.29 | 17.46 | 10.7 | 14,608.4 |
0.025 wt% | 1.08 ± 0.01 | 22.33 ± 0.23 | 71.95 ± 1.05 | 17.38 ± 0.36 | 18.04 | 11.0 | 8716.0 |
0.05 wt% | 1.08 ± 0.01 | 22.20 ± 0.24 | 73.21 ± 2.16 | 17.65 ± 0.66 | 18.59 | 10.3 | 10,075.9 |
0.1 wt% | 1.06 ± 0.01 | 22.08 ± 0.15 | 70.04 ± 1.40 | 16.38 ± 0.24 | 16.84 | 12.4 | 12,259.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Zeng, Y.; Chen, G.; Qiu, Y. Highly Regioselective Synthesis of Bisadduct[C70] Additive toward the Enhanced Performance of Perovskite Solar Cells. Nanomaterials 2022, 12, 2355. https://doi.org/10.3390/nano12142355
Chen M, Zeng Y, Chen G, Qiu Y. Highly Regioselective Synthesis of Bisadduct[C70] Additive toward the Enhanced Performance of Perovskite Solar Cells. Nanomaterials. 2022; 12(14):2355. https://doi.org/10.3390/nano12142355
Chicago/Turabian StyleChen, Muqing, Yanyan Zeng, Gui Chen, and Yongfu Qiu. 2022. "Highly Regioselective Synthesis of Bisadduct[C70] Additive toward the Enhanced Performance of Perovskite Solar Cells" Nanomaterials 12, no. 14: 2355. https://doi.org/10.3390/nano12142355
APA StyleChen, M., Zeng, Y., Chen, G., & Qiu, Y. (2022). Highly Regioselective Synthesis of Bisadduct[C70] Additive toward the Enhanced Performance of Perovskite Solar Cells. Nanomaterials, 12(14), 2355. https://doi.org/10.3390/nano12142355