Revealing the Real Role of Etching during Controlled Assembly of Nanocrystals Applied to Electrochemical Reduction of CO2
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, H.; Wang, T.; Liang, J.; Li, Q.; Sun, S. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today 2018, 21, 41–54. [Google Scholar] [CrossRef]
- Kim, S.W.; Park, M.; Kim, H.; Yoon, K.J.; Son, J.W.; Lee, J.H.; Kim, B.K.; Lee, J.H.; Hong, J. In-Situ nano-alloying Pd-Ni for economical control of syngas production from high-temperature thermo-electrochemical reduction of steam/CO2. Appl. Catal. B Environ. 2017, 200, 265–273. [Google Scholar] [CrossRef]
- Agarwal, A.S.; Zhai, Y.; Hill, D.; Sridhar, N. The electrochemical reduction of carbon dioxide to formate/formic acid: Engineering and economic feasibility. ChemSusChem. 2011, 4, 1301–1310. [Google Scholar] [CrossRef]
- Huan, T.N.; Simon, P.; Rousse, G.; Genois, I.; Artero, V.; Fontecave, M. Porous dendritic copper: An electrocatalyst for highly selective CO2 reduction to formate in water/ionic liquid electrolyte. Chem. Sci. 2017, 8, 742–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.Y.; Chen, Y.L.; Chang, R.D. How to stimulate renewable energy power generation effectively?—China’s incentive approaches and lessons. Renew. Energy 2016, 92, 147–156. [Google Scholar] [CrossRef]
- Qiao, J.; Liu, Y.; Hong, F.; Zhang, J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43, 631–675. [Google Scholar] [CrossRef]
- Diercks, C.S.; Liu, Y.; Cordova, K.E.; Yaghi, O.M. The role of reticular chemistry in the design of CO2 reduction catalysts. Nat. Mater. 2018, 17, 301–307. [Google Scholar] [CrossRef]
- Chang, B.; Zhang, X.G.; Min, Z.; Lu, W.; Li, Z.; Qiu, J.; Wang, H.; Fan, J.; Wang, J. Efficient electrocatalytic conversion of CO2 to syngas for the Fischer-Tropsch process using a partially reduced Cu3P nanowire. J. Mater. Chem. A 2021, 9, 17876–17884. [Google Scholar] [CrossRef]
- Hernández, S.; Farkhondehfal, M.A.; Sastre, F.; Makkee, M.; Saracco, G.; Russo, N. Syngas production from electrochemical reduction of CO2: Current status and prospective implementation. Green Chem. 2017, 19, 2326–2346. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Shi, Y.; Meng, N.; Lu, S.; Yu, Y.; Zhang, B. Electrosynthesis of syngas via the Co-reduction of CO2 and H2O. Cell Rep. Phys. Sci. 2020, 1, 100237. [Google Scholar] [CrossRef]
- Wei, B.; Xiong, Y.; Zhang, Z.; Hao, J.; Li, L.; Shi, W. Efficient electrocatalytic reduction of CO2 to HCOOH by bimetallic In-Cu nanoparticles with controlled growth facet. Appl. Catal. B Environ. 2021, 283, 119646. [Google Scholar] [CrossRef]
- Hickman, D.A.; Schmidt, L.D. Production of syngas by direct catalytic oxidation of methane. Science 1993, 259, 343. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.N.; Blum, L. Syngas and synfuels from H2O and CO2: Current status. Chem. Ing. Tech. 2015, 87, 354–375. [Google Scholar] [CrossRef]
- Li, S.; Alfonso, D.; Nagarajan, A.V.; House, S.D.; Yang, J.C.; Kauffman, D.R.; Mpourmpakis, G.; Jin, R. Monopalladium substitution in gold nanoclusters enhances CO2 electroreduction activity and selectivity. ACS Catal. 2020, 10, 12011–12016. [Google Scholar] [CrossRef]
- Buckley, A.K.; Cheng, T.; Oh, M.H.; Su, G.M.; Garrison, J.; Utan, S.W.; Zhu, C.; Toste, F.D.; Goddard, W.A.; Toma, F.M. Approaching 100% selectivity at low potential on Ag for electrochemical CO2 reduction to CO using a surface additive. ACS Catal. 2021, 11, 9034–9042. [Google Scholar] [CrossRef]
- Jia, L.; Sun, M.; Xu, J.; Zhao, X.; Zhou, R.; Pan, B.; Wang, L.; Han, N.; Huang, B.; Li, Y. Phase-dependent electrocatalytic CO2 reduction on Pd3Bi nanocrystals. Angew. Chem. Int. Ed. 2021, 60, 21741–21745. [Google Scholar] [CrossRef]
- Zhang, T.; Li, X.; Qiu, Y.; Su, P.; Xu, W.; Zhong, H.; Zhang, H. Multilayered Zn nanosheets as an electrocatalyst for efficient electrochemical reduction of CO2. J. Catal. 2018, 357, 154–162. [Google Scholar] [CrossRef]
- García, J.; Jiménez, C.; Martínez, F.; Camarillo, R.; Rincón, J. Electrochemical reduction of CO2 using Pb catalysts synthesized in supercritical medium. J. Catal. 2018, 367, 72–80. [Google Scholar] [CrossRef]
- Guo, S.; Zhao, S.; Wu, X.; Li, H.; Zhou, Y.; Zhu, C.; Yang, N.; Jiang, X.; Gao, J.; Bai, L.; et al. A Co3O4-CDots-C3N4 three component electrocatalyst design concept for efficient and tunable CO2 reduction to syngas. Nat. Commun. 2017, 8, 1828. [Google Scholar] [CrossRef]
- He, R.; Zhang, A.; Ding, Y.; Kong, T.; Xiao, Q.; Li, H.; Liu, Y.; Zeng, J. Achieving the widest range of syngas proportions at high current density over cadmium sulfoselenide nanorods in CO2 electroreduction. Adv. Mater. 2018, 30, 1705872. [Google Scholar] [CrossRef]
- Lv, K.; Teng, C.; Shi, M.; Yuan, Y.; Zhu, Y.; Wang, J.; Kong, Z.; Lu, X.; Zhu, Y. Hydrophobic and electronic properties of the E-MoS2 nanosheets induced by FAS for the CO2 electroreduction to syngas with a wide range of CO/H2 ratios. Adv. Funct. Mater. 2018, 28, 1802339. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Z.; Zhao, Z.; Huang, H.; Anjum, D.H.; Wang, D.; He, J.H.; Huang, K.W. Tunable selectivity for electrochemical CO2 reduction by bimetallic Cu–Sn catalysts: Elucidating the roles of Cu and Sn. ACS Catal. 2021, 11, 11103–11108. [Google Scholar] [CrossRef]
- Zou, X.; Ma, C.; Li, A.; Gao, Z.; Shadike, Z.; Jiang, K.; Zhang, J.; Huang, Z.; Zhu, L. Nanoparticle-assisted Ni–Co binary single-atom catalysts supported on carbon nanotubes for efficient electroreduction of CO2 to syngas with controllable CO/H2 ratios. ACS Appl. Energy Mater. 2021, 4, 9572–9581. [Google Scholar] [CrossRef]
- Luna, P.D.; Hahn, C.; Higgins, D.; Jaffer, S.A.; Jaramillo, T.F.; Sargent, E.H. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 2019, 364, 3506. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Jiao, Y.; Zhu, Y.H.; Chen, S.M.; Song, L.; Jaroniec, M.; Zheng, Y.; Qiao, S.Z. Syngas production from electrocatalytic CO2 reduction with high energetic efficiency and current density. J. Mater. Chem. A. 2019, 7, 7675–7682. [Google Scholar] [CrossRef]
- Zhao, J.; Deng, J.; Han, J.; Imhanria, S.; Chen, K.; Wang, W. Effective tunable syngas generation via CO2 reduction reaction by non-precious Fe-N-C electrocatalyst. Chem. Eng. J. 2020, 389, 124323. [Google Scholar] [CrossRef]
- Yue, T.; Chang, Y.; Liu, J.; Jia, J.; Jia, M. Fe-Ni nanoparticles on N-doped carbon as catalysts for electrocatalytic reduction of CO2 to tune CO/H2 ratio. ChemElectroChem 2021, 8, 4233–4239. [Google Scholar] [CrossRef]
- Yue, T.; Huang, H.; Chang, Y.; Jia, J.; Jia, M. Controlled assembly of nitrogen-doped iron carbide nanoparticles on reduced graphene oxide for electrochemical reduction of carbon dioxide to syngas. J. Colloid Interface Sci. 2021, 601, 877–885. [Google Scholar] [CrossRef]
- Wang, C.; Yang, F.; Qiu, T.; Cao, Y.; Zhong, H.; Yu, C.; Li, R.; Mao, L.; Li, Y. Preparation of an efficient Fe/N/C electrocatalyst and its application for oxygen reduction reaction in alkaline media. J. Electroanal. Chem. 2018, 810, 62–68. [Google Scholar] [CrossRef]
- Yang, X.; Sun, X.; Rauf, M.; Mi, H.; Sun, L.; Deng, L.; Ren, X.; Zhang, P.; Li, Y. N-Doped porous tremella-like Fe3C/C electrocatalysts derived from metal-organic frameworks for oxygen reduction reaction. Dalton Trans. 2020, 49, 797–807. [Google Scholar] [CrossRef]
- Prslja, P.; López, N. Stability and Redispersion of Ni nanoparticles supported on N-doped carbons for the CO2 electrochemical reduction. ACS Catal. 2020, 11, 88–94. [Google Scholar] [CrossRef]
- Shinagawa, T.; Larrazábal, G.O.; Martín, A.J.; Krumeich, F.; Pérez-Ramírez, J. Sulfur-modified copper catalysts for the electrochemical reduction of carbon dioxide to formate. ACS Catal. 2018, 8, 837–844. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Guo, Y.; Shang, B.; Fan, T.; Lian, X.; Huang, P.; Dong, Y.; Chen, Z.; Yi, X. Unveiling the synergistic effect between graphitic carbon nitride and Cu2O toward CO2 electroreduction to C2H4. ChemSusChem 2021, 14, 929–937. [Google Scholar] [CrossRef]
- Park, J.; An, K.; Wang, Y.H.; Park, J.G.; Noh, H.J.; Kim, J.Y.; Park, J.H.; Hwang, N.M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.W.; Chen, Z.G.; Lu, G.Q.; Cheng, H.M. Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor. Chem. Mater. 2008, 20, 7195–7200. [Google Scholar] [CrossRef]
- Choi, C.H.; Park, S.H.; Woo, S.I. N-doped carbon prepared by pyrolysis of dicyandiamide with various MeCl2·xH2O (Me=Co, Fe, and Ni) composites: Effect of type and amount of metal seed on oxygen reduction reactions. Appl. Catal. B Environ. 2012, 120, 123–131. [Google Scholar] [CrossRef]
- Wang, Z.; Ang, J.; Liu, J.; Ma, X.Y.D.; Kong, J.; Zhang, Y.; Yan, T.; Lu, X. FeNi alloys encapsulated in N-doped CNTs-tangled porous carbon fibers as highly efficient and durable bifunctional oxygen electrocatalyst for rechargeable zinc-air battery. Appl. Catal. B Environ. 2020, 263, 118344. [Google Scholar] [CrossRef]
- Silva, W.O.; Silva, G.C.; Webster, R.F.; Benedetti, T.M.; Tilley, R.D.; Ticianelli, E.A. Electrochemical reduction of CO2 on nitrogen-doped carbon catalysts with and without Iron. ChemElectroChem 2019, 6, 4626–4636. [Google Scholar] [CrossRef]
- Ju, W.; Bagger, A.; Hao, G.P.; Varela, A.S.; Sinev, I.; Bon, V.; Cuenya, B.R.; Kaskel, S.; Rossmeisl, J.; Strasser, P. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat. Commun. 2017, 8, 944. [Google Scholar] [CrossRef]
- Matanovic, I.; Artyushkova, K.; Atanassov, P. Understanding PGM-free catalysts by linking density functional theory calculations and structural analysis: Perspectives and challenges. Curr. Opin. Electrochem. 2018, 9, 137–144. [Google Scholar] [CrossRef]
- Zhao, X.; Pachfule, P.; Li, S.; Langenhahn, T.; Ye, M.; Tian, G.; Schmidt, J.; Thomas, A. Silica-templated covalent organic framework-derived Fe–N-doped mesoporous carbon as oxygen reduction electrocatalyst. Chem. Mater. 2019, 31, 3274–3280. [Google Scholar] [CrossRef]
- Ahn, S.H.; Yu, X.; Manthiram, A. “Wiring” Fe-Nx-embedded porous carbon framework onto 1D nanotubes for efficient oxygen reduction reaction in alkaline and acidic media. Adv. Mater. 2017, 29, 1606534. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, Y.; Li, P.; Wang, L.; Zhang, H.; Liu, H.; Liu, J.; Wang, Y.; Tian, W.; Wang, X.; et al. Fe-N-doped porous carbon from petroleum asphalt for highly efficient oxygen reduction reaction. Carbon. 2018, 126, 1–8. [Google Scholar] [CrossRef]
- Jiang, W.J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L.J.; Wang, J.Q.; Hu, J.S.; Wei, Z.; Wan, L.J. Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. J. Am. Chem. Soc. 2016, 138, 3570–3578. [Google Scholar] [CrossRef]
- Wei, J.; Liang, Y.; Hu, Y.; Kong, B.; Simon, G.P.; Zhang, J.; Jiang, S.P.; Wang, H. A versatile iron-tannin-framework ink coating strategy to fabricate biomass-derived iron carbide/Fe-N-carbon catalysts for efficient oxygen reduction. Angew. Chem. Int. Ed. 2016, 55, 1355–1359. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Zhu, J.; Feng, L.; Liu, C.; Xing, W. Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv. Mater. 2015, 27, 2521–2527. [Google Scholar] [CrossRef]
- Kolobova, E.; Pakrieva, E.; Pascual, L.; Corberán, V.C.; Bogdanchikova, N.; Farias, M.; Pestryakov, A. Selective oxidation of n-octanol on unmodified and La-modified nanogold catalysts: Effect of metal content. Catal. Today 2019, 333, 127–132. [Google Scholar] [CrossRef]
- Fan, L.; Xia, Z.; Xu, M.; Lu, Y.; Li, Z. 1D SnO2 with wire-in-tube architectures for highly selective electrochemical reduction of CO2 to C1 products. Adv. Funct. Mater. 2018, 28, 1706289. [Google Scholar] [CrossRef]
- Lu, Y.; Han, B.; Tian, C.; Wu, J.; Geng, D.; Wang, D. Efficient electrocatalytic reduction of CO2 to CO on an electrodeposited Zn porous network. Electrochem. Commun. 2018, 97, 87–90. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Xi, S.; Du, Y.; Hai, X.; Wang, J.; Xu, H.; Wu, G.; Zhang, J.; Lu, J.; et al. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew. Chem. Int. Ed. 2019, 58, 14871–14876. [Google Scholar] [CrossRef]
- Yang, X.; Cheng, J.; Xuan, X.; Liu, N.; Liu, J. Boosting defective carbon by anchoring well-defined atomically dispersed Ni-N4 sites for electrocatalytic CO2 reduction. ACS Sustain. Chem. Eng. 2020, 8, 10536–10543. [Google Scholar] [CrossRef]
- Gong, S.; Wang, W.; Xiao, X.; Liu, J.; Wu, C.; Lv, X. Elucidating influence of the existence formation of anchored cobalt phthalocyanine on electrocatalytic CO2-to-CO conversion. Nano Energy. 2021, 84, 105904. [Google Scholar] [CrossRef]
- Kim, M.; Yoo, J.M.; Ahn, C.Y.; Jang, J.H.; Son, Y.J.; Shin, H.; Kang, J.; Kang, Y.S.; Yoo, S.J.; Lee, K.S.; et al. Rational generation of Fe-Nx active sites in Fe-N-C electrocatalysts facilitated by Fe-N coordinated precursors for the oxygen reduction reaction. ChemCatChem. 2019, 11, 5982–5988. [Google Scholar] [CrossRef]
- Chen, K.; Deng, J.; Zhao, J.; Liu, X.; Imhanria, S.; Wang, W. Electrocatalytic production of tunable syngas from CO2 via a metal-free porous nitrogen-doped carbon. Ind. Eng. Chem. 2021, 60, 7739–7745. [Google Scholar] [CrossRef]
- Cho, M.; Seo, J.W.; Song, J.T.; Lee, J.Y.; Oh, J. Silver nanowire/carbon sheet composites for electrochemical syngas generation with tunable H2/CO ratios. ACS Omega 2017, 2, 3441–3446. [Google Scholar] [CrossRef] [Green Version]
- Daiyan, R.; Chen, R.; Kumar, P.; Bedford, N.M.; Qu, J.; Cairney, J.M.; Lu, X.; Amal, R. Tunable syngas production through CO2 electroreduction on cobalt-carbon composite electrocatalyst. ACS Appl. Mater. Interfaces 2020, 12, 9307–9315. [Google Scholar] [CrossRef]
- Kumar, B.; Brian, J.P.; Atla, V.; Kumari, S.; Bertram, K.A.; White, R.T.; Spurgeon, J.M. Controlling the product syngas H2:CO ratio through pulsed-bias electrochemical reduction of CO2 on copper. ACS Catal. 2016, 6, 4739–4745. [Google Scholar] [CrossRef]
- Leverett, J.; Daiyan, R.; Gong, L.; Iputera, K.; Tong, Z.; Qu, J.; Ma, Z.; Zhang, Q.; Cheong, S.; Cairney, J.; et al. Designing undercoordinated Ni-Nx and Fe-Nx on holey graphene for electrochemical CO2 conversion to syngas. ACS Nano. 2021, 15, 12006–12018. [Google Scholar] [CrossRef]
- Xie, H.; Chen, S.; Ma, F.; Liang, J.; Miao, Z.; Wang, T.; Wang, H.L.; Huang, Y.; Li, Q. Boosting tunable syngas formation via electrochemical CO2 reduction on Cu/In2O3 core/shell nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 36996–37004. [Google Scholar] [CrossRef]
- Zhao, Y.; Miao, Z.; Wang, F.; Liang, M.; Liu, Y.; Wu, M.; Diao, L.; Mu, J.; Cheng, Y.; Zhou, J. N-doped carbon-encapsulated nickel on reduced graphene oxide materials for efficient CO2 electroreduction to syngas with potential-independent H2/CO ratios. J. Environ. Chem. Eng. 2021, 9, 106705. [Google Scholar] [CrossRef]
- Wang, M.; Torbensen, K.; Salvatore, D.; Ren, S.; Joulie, D.; Dumoulin, F.; Mendoza, D.; Lassalle-Kaiser, B.; Isci, U.; Berlinguette, C.P.; et al. CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine. Nat. Commun. 2019, 10, 3602. [Google Scholar] [CrossRef] [PubMed]
- Malik, K.; Rajbongshi, B.M.; Verma, A. Syngas production from electrochemical reduction of CO2 at high current density using oxide derived Zn/Cu nanocomposite. J. CO2 Util. 2019, 33, 311–319. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, T.; Chang, Y.; Huang, H.; Jia, J.; Jia, M. Revealing the Real Role of Etching during Controlled Assembly of Nanocrystals Applied to Electrochemical Reduction of CO2. Nanomaterials 2022, 12, 2546. https://doi.org/10.3390/nano12152546
Yue T, Chang Y, Huang H, Jia J, Jia M. Revealing the Real Role of Etching during Controlled Assembly of Nanocrystals Applied to Electrochemical Reduction of CO2. Nanomaterials. 2022; 12(15):2546. https://doi.org/10.3390/nano12152546
Chicago/Turabian StyleYue, Tingting, Ying Chang, Haitao Huang, Jingchun Jia, and Meilin Jia. 2022. "Revealing the Real Role of Etching during Controlled Assembly of Nanocrystals Applied to Electrochemical Reduction of CO2" Nanomaterials 12, no. 15: 2546. https://doi.org/10.3390/nano12152546
APA StyleYue, T., Chang, Y., Huang, H., Jia, J., & Jia, M. (2022). Revealing the Real Role of Etching during Controlled Assembly of Nanocrystals Applied to Electrochemical Reduction of CO2. Nanomaterials, 12(15), 2546. https://doi.org/10.3390/nano12152546