In Situ Time-of-Flight Mass Spectrometry of Ionic Fragments Induced by Focused Electron Beam Irradiation: Investigation of Electron Driven Surface Chemistry inside an SEM under High Vacuum
Abstract
:1. Introduction
2. Materials and Methods
2.1. FEB Induced Mass Spectrometry
2.2. FEBiMS on Solid Compounds
2.3. FEBiMS Monitoring of FEBID
2.4. Material Composition and Shape
3. Results and Discussion
3.1. FEBiMS on Solid Compounds
3.1.1. FEBiMS on Ru3(CO)12 grains
3.1.2. FEBiMS on Ag and Cu Carboxylate Grains
3.2. FEBiMS Monitoring during W(CO)6 FEBID
3.2.1. Mass Spectra
3.2.2. Signal Origin—Gas Phase vs. Adsorbed Phase
3.2.3. Peak Evolution Monitoring during FEBID with FEBiMS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madey, T.E. Electron- and Photon-Stimulated Desorption: Probes of Structure and Bonding at Surfaces. Science 1986, 234, 316. [Google Scholar] [CrossRef] [PubMed]
- McPhail, D.S.; Chater, R.J.; Li, L. Applications of focused ion beam SIMS in materials science. Microchim. Acta 2008, 161, 387–397. [Google Scholar] [CrossRef]
- Pillatsch, L.; Östlund, F.; Michler, J. FIBSIMS: A review of secondary ion mass spectrometry for analytical dual beam focussed ion beam instruments. Prog. Cryst. Growth Charact. Mater. 2019, 65, 1–19. [Google Scholar] [CrossRef]
- Whitby, J.A.; Östlund, F.; Horvath, P.; Gabureac, M.; Riesterer, J.L.; Utke, I.; Hohl, M.; Sedláček, L.; Jiruše, J.; Friedli, V.; et al. High Spatial Resolution Time-of-Flight Secondary Ion Mass Spectrometry for the Masses: A Novel Orthogonal ToF FIB-SIMS Instrument with In Situ AFM. Adv. Mater. Sci. Eng. 2012, 2012, 180437. [Google Scholar] [CrossRef] [Green Version]
- Priebe, A.; Barnes, J.-P.; Edwards, T.E.J.; Pethö, L.; Balogh, I.; Michler, J. 3D Imaging of Nanoparticles in an Inorganic Matrix Using TOF-SIMS Validated with STEM and EDX. Anal. Chem. 2019, 91, 11834–11839. [Google Scholar] [CrossRef] [PubMed]
- Vollnhals, F.; Wirtz, T. Correlative Microscopy in 3D: Helium Ion Microscopy-Based Photogrammetric Topography Reconstruction Combined with in situ Secondary Ion Mass Spectrometry. Anal. Chem. 2018, 90, 11989–11995. [Google Scholar] [CrossRef]
- Giannuzzi, L.A.; Utlaut, M. A review of Ga+ FIB/SIMS. Surf. Interface Anal. 2011, 43, 475–478. [Google Scholar] [CrossRef]
- Priebe, A.; Pethö, L.; Michler, J. Fluorine Gas Coinjection as a Solution for Enhancing Spatial Resolution of Time-of-Flight Secondary Ion Mass Spectrometry and Separating Mass Interference. Anal. Chem. 2020, 92, 2121–2129. [Google Scholar] [CrossRef]
- Priebe, A.; Pethö, L.; Huszar, E.; Xie, T.; Utke, I.; Michler, J. High Sensitivity of Fluorine Gas-Assisted FIB-TOF-SIMS for Chemical Characterization of Buried Sublayers in Thin Films. ACS Appl. Mater. Interfaces 2021, 13, 15890–15900. [Google Scholar] [CrossRef]
- Wieczerzak, K.; Priebe, A.; Utke, I.; Michler, J. Practical Aspects of Focused Ion Beam Time-of-Flight Secondary Ion Mass Spectrometry Analysis Enhanced by Fluorine Gas Coinjection. Chem. Mater. 2021, 33, 1581–1593. [Google Scholar] [CrossRef]
- Priebe, A.; Utke, I.; Pethö, L.; Michler, J. Application of a Gas-Injection System during the FIB-TOF-SIMS Analysis—Influence of Water Vapor and Fluorine Gas on Secondary Ion Signals and Sputtering Rates. Anal. Chem. 2019, 91, 11712–11722. [Google Scholar] [CrossRef] [PubMed]
- Thorman, R.M.; Kumar, T.P.R.; Fairbrother, D.H.; Ingólfsson, O. The role of low-energy electrons in focused electron beam induced deposition: Four case studies of representative precursors. Beilstein J. Nanotechnol. 2015, 6, 1904–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ingólfsson, O. Low-Energy Electrons: Fundamentals and Applications, 1st ed.; Ingólfsson, O., Ed.; Jenny Stanford Publishing: Boca Raton, FL, USA, 2019; Volume 1. [Google Scholar]
- Junige, M.; Löffler, M.; Geidel, M.; Albert, M.; Bartha, J.W.; Zschech, E.; Rellinghaus, B.; Dorp, W.F.V. Area-selective atomic layer deposition of Ru on electron-beam-written Pt(C) patterns versus SiO2substratum. Nanotechnology 2017, 28, 395301. [Google Scholar] [CrossRef] [PubMed]
- Mameli, A.; Karasulu, B.; Verheijen, M.A.; Barcones, B.; Macco, B.; Mackus, A.J.M.; Kessels, W.M.M.E.; Roozeboom, F. Area-Selective Atomic Layer Deposition of ZnO by Area Activation Using Electron Beam-Induced Deposition. Chem. Mater. 2019, 31, 1250–1257. [Google Scholar] [CrossRef] [Green Version]
- Sprenger, J.K.; Sun, H.; Cavanagh, A.S.; George, S.M. Electron-enhanced atomic layer deposition of silicon thin films at room temperature. J. Vac. Sci. Technol. A 2017, 36, 01A118. [Google Scholar] [CrossRef]
- Sprenger, J.K.; Cavanagh, A.S.; Sun, H.; Wahl, K.J.; Roshko, A.; George, S.M. Electron Enhanced Growth of Crystalline Gallium Nitride Thin Films at Room Temperature and 100 °C Using Sequential Surface Reactions. Chem. Mater. 2016, 28, 5282–5294. [Google Scholar] [CrossRef]
- Bozso, F.; Avouris, P. Electron-induced chemical vapor deposition by reactions induced in adsorbed molecular layers. Appl. Phys. Lett. 1988, 53, 1095–1097. [Google Scholar] [CrossRef]
- Nadhom, H.; Lundin, D.; Rouf, P.; Pedersen, H. Chemical vapor deposition of metallic films using plasma electrons as reducing agents. J. Vac. Sci. Technol. A 2020, 38, 033402. [Google Scholar] [CrossRef]
- Huth, M.; Porrati, F.; Dobrovolskiy, O.V. Focused electron beam induced deposition meets materials science. Microelectron. Eng. 2018, 185–186, 9–28. [Google Scholar] [CrossRef] [Green Version]
- Plank, H.; Winkler, R.; Schwalb, C.H.; Hütner, J.; Fowlkes, J.D.; Rack, P.D.; Utke, I.; Huth, M. Focused Electron Beam-Based 3D Nanoprinting for Scanning Probe Microscopy: A Review. Micromachines 2020, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- Winkler, R.; Schmidt, F.-P.; Haselmann, U.; Fowlkes, J.D.; Lewis, B.B.; Kothleitner, G.; Rack, P.D.; Plank, H. Direct-Write 3D Nanoprinting of Plasmonic Structures. ACS Appl. Mater. Interfaces 2017, 9, 8233–8240. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Pacheco, A.; Skoric, L.; De Teresa, J.M.; Pablo-Navarro, J.; Huth, M.; Dobrovolskiy, O.V. Writing 3D Nanomagnets Using Focused Electron Beams. Materials 2020, 13, 3774. [Google Scholar] [CrossRef] [PubMed]
- Muray, A.; Scheinfein, M.; Isaacson, M.; Adesida, I. Radiolysis and resolution limits of inorganic halide resists. J. Vac. Sci. Technol. B Microelectron. Processing Phenom. 1985, 3, 367–372. [Google Scholar] [CrossRef]
- Streblechenko, D.; Scheinfein, M.R. Magnetic nanostructures produced by electron beam patterning of direct write transition metal fluoride resists. J. Vac. Sci. Technol. A 1998, 16, 1374–1379. [Google Scholar] [CrossRef]
- Bedson, T.R.; Palmer, R.E.; Wilcoxon, J.P. Mechanism of electron-beam writing in passivated gold nanoclusters. Appl. Phys. Lett. 2001, 78, 2061–2063. [Google Scholar] [CrossRef]
- Bhuvana, T.; Kulkarni, G.U. Highly Conducting Patterned Pd Nanowires by Direct-Write Electron Beam Lithography. ACS Nano 2008, 2, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Ito, T.; Okazaki, S. Pushing the limits of lithography. Nature 2000, 406, 1027–1031. [Google Scholar] [CrossRef]
- Zhao, D.; Han, A.; Qiu, M. Ice lithography for 3D nanofabrication. Sci. Bull. 2019, 64, 865–871. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Zhao, D.; Liu, D.; Ma, B.; Yao, G.; Li, Q.; Han, A.; Qiu, M. Three-Dimensional in Situ Electron-Beam Lithography Using Water Ice. Nano Lett. 2018, 18, 5036–5041. [Google Scholar] [CrossRef] [Green Version]
- Tiddi, W.; Elsukova, A.; Beleggia, M.; Han, A. Organic ice resists for 3D electron-beam processing: Instrumentation and operation. Microelectron. Eng. 2018, 192, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Rathore, A.; Cipriani, M.; Huang, C.-C.; Amiaud, L.; Dablemont, C.; Lafosse, A.; Ingólfsson, O.; De Simone, D.; De Gendt, S. Electron-induced fragmentation mechanisms in organic monomers and their implications for photoresist optimization for EUV lithography. Phys. Chem. Chem. Phys. 2021, 23, 9228–9234. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Chen, S.; Dai, H.; Yang, Z.; Chen, Z.; Wang, Y.; Chen, Y.; Peng, W.; Shan, W.; Duan, H. Recent advances in focused ion beam nanofabrication for nanostructures and devices: Fundamentals and applications. Nanoscale 2021, 13, 1529–1565. [Google Scholar] [CrossRef] [PubMed]
- Alkemade, P.F.A.; Miro, H. Focused helium-ion-beam-induced deposition. Appl. Phys. A 2014, 117, 1727–1747. [Google Scholar] [CrossRef]
- Shorubalko, I.; Pillatsch, L.; Utke, I. Direct–Write Milling and Deposition with Noble Gases. In Helium Ion Microscopy; Hlawacek, G., Gölzhäuser, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 355–393. [Google Scholar] [CrossRef]
- NIST. Theoretical Mass Spectrometry. Available online: https://www.nist.gov/programs-projects/theoretical-mass-spectrometry (accessed on 10 September 2020).
- Utke, I.; Hoffmann, P.; Melngailis, J. Gas-assisted focused electron beam and ion beam processing and fabrication. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 2008, 26, 1197. [Google Scholar] [CrossRef] [Green Version]
- Barth, S.; Huth, M.; Jungwirth, F. Precursors for direct-write nanofabrication with electrons. J. Mater. Chem. C 2020, 8, 15884–15919. [Google Scholar] [CrossRef]
- Moore, J.H.; Swiderek, P.; Matejcik, S.; Allan, M. Fundamentals of interactions of Electron with Molecules. In Nanofabrication Using Focused Ion and Electron Beams; Utke, I., Moshkalev, S., Russell, P., Eds.; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Fabrikant, I.I. Recent progress in the theory of dissociative attachment: From diatomics to biomolecules. J. Phys. Conf. Ser. 2010, 204, 012004. [Google Scholar] [CrossRef]
- Čížek, M.; Horáček, J.; Sergenton, A.C.; Popović, D.B.; Allan, M.; Domcke, W.; Leininger, T.; Gadea, F.X. Inelastic low-energy electron collisions with the HBr and DBr molecules: Experiment and theory. Phys. Rev. A 2001, 63, 062710. [Google Scholar] [CrossRef]
- Ragesh Kumar, T.P.; Nag, P.; Ranković, M.; Čurík, R.; Knížek, A.; Civiš, S.; Ferus, M.; Trnka, J.; Houfek, K.; Čížek, M.; et al. Electron-impact vibrational excitation of isocyanic acid HNCO. Phys. Rev. A 2020, 102, 062822. [Google Scholar] [CrossRef]
- Kumar, T.P.R.; Kočišek, J.; Bravaya, K.; Fedor, J. Electron-induced vibrational excitation and dissociative electron attachment in methyl formate. Phys. Chem. Chem. Phys. 2020, 22, 518–524. [Google Scholar] [CrossRef]
- Chourou, S.T.; Orel, A.E. Dissociative electron attachment to acetylene. Phys. Rev. A 2008, 77, 042709. [Google Scholar] [CrossRef]
- Langó, J.; Szepes, L.; Császár, P.; Innorta, G. Studies on the unimolecular decomposition processes of organometallic ions. J. Organomet. Chem. 1984, 269, 133–145. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Irikura, K.K. Electron-impact ionization cross sections for polyatomic molecules, radicals, and ions. AIP Conf. Proc. 2000, 543, 220–241. [Google Scholar] [CrossRef]
- Deutsch, H.; Bronold, F.X.; Becker, K. Calculation of electron-impact ionization cross sections: Bottom-up inductive vs. top-down deductive approaches. Int. J. Mass Spectrom. 2014, 365–366, 128–139. [Google Scholar] [CrossRef]
- Thorman, R.M.; Brannaka, J.A.; McElwee-White, L.; Ingólfsson, O. Low energy electron-induced decomposition of (η3-C3H5)Ru(CO)3Br, a potential focused electron beam induced deposition precursor with a heteroleptic ligand set. Phys. Chem. Chem. Phys. 2017, 19, 13264–13271. [Google Scholar] [CrossRef] [PubMed]
- Lacko, M.; Papp, P.; Szymańska, I.B.; Szłyk, E.; Matejčík, Š. Electron interaction with copper(II) carboxylate compounds. Beilstein J. Nanotechnol. 2018, 9, 384–398. [Google Scholar] [CrossRef] [Green Version]
- Spencer, J.A.; Rosenberg, S.G.; Barclay, M.; Wu, Y.-C.; McElwee-White, L.; Howard Fairbrother, D. Understanding the electron-stimulated surface reactions of organometallic complexes to enable design of precursors for electron beam-induced deposition. Appl. Phys. A 2014, 117, 1631–1644. [Google Scholar] [CrossRef]
- Wnuk, J.D.; Gorham, J.M.; Rosenberg, S.G.; van Dorp, W.F.; Madey, T.E.; Hagen, C.W.; Fairbrother, D.H. Electron Induced Surface Reactions of the Organometallic Precursor Trimethyl(methylcyclopentadienyl)platinum(IV). J. Phys. Chem. C 2009, 113, 2487–2496. [Google Scholar] [CrossRef]
- Rosenberg, S.G.; Barclay, M.; Fairbrother, D.H. Electron induced reactions of surface adsorbed tungsten hexacarbonyl (W(CO)6). Phys. Chem. Chem. Phys. 2013, 15, 4002–4015. [Google Scholar] [CrossRef]
- Rohdenburg, M.; Martinović, P.; Ahlenhoff, K.; Koch, S.; Emmrich, D.; Gölzhäuser, A.; Swiderek, P. Cisplatin as a Potential Platinum Focused Electron Beam Induced Deposition Precursor: NH3 Ligands Enhance the Electron-Induced Removal of Chlorine. J. Phys. Chem. C 2019, 123, 21774–21787. [Google Scholar] [CrossRef] [Green Version]
- Rohdenburg, M.; Boeckers, H.; Brewer, C.R.; McElwee-White, L.; Swiderek, P. Efficient NH3-based process to remove chlorine from electron beam deposited ruthenium produced from (η3-C3H5)Ru(CO)3Cl. Sci. Rep. 2020, 10, 10901. [Google Scholar] [CrossRef]
- Bresin, M.; Thiel, B.L.; Toth, M.; Dunn, K.A. Focused electron beam-induced deposition at cryogenic temperatures. J. Mater. Res. 2011, 26, 357–364. [Google Scholar] [CrossRef]
- Bresin, M.; Toth, M.; Dunn, K.A. Direct-write 3D nanolithography at cryogenic temperatures. Nanotechnology 2012, 24, 035301. [Google Scholar] [CrossRef] [PubMed]
- Córdoba, R.; Orús, P.; Strohauer, S.; Torres, T.E.; De Teresa, J.M. Ultra-fast direct growth of metallic micro- and nano-structures by focused ion beam irradiation. Sci. Rep. 2019, 9, 14076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Teresa, J.M.; Orús, P.; Córdoba, R.; Philipp, P. Comparison between Focused Electron/Ion Beam-Induced Deposition at Room Temperature and under Cryogenic Conditions. Micromachines 2019, 10, 799. [Google Scholar] [CrossRef] [Green Version]
- Harriott, L.R.; Cummings, K.D.; Gross, M.E.; Brown, W.L. Decomposition of palladium acetate films with a microfocused ion beam. Appl. Phys. Lett. 1986, 49, 1661–1662. [Google Scholar] [CrossRef]
- Stark, T.J.; Mayer, T.M.; Griffis, D.P.; Russell, P.E. Electron beam induced metalization of palladium acetate. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Processing Meas. Phenom. 1991, 9, 3475–3478. [Google Scholar] [CrossRef]
- Hoffmann, P.; van den Bergh, H.; Flicstein, J.; Assayag, G.B.; Gierak, J.; Bresse, J.F. Direct writing of iridium lines with a focused ion beam. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Processing Meas. Phenom. 1991, 9, 3483–3486. [Google Scholar] [CrossRef]
- Hoffmann, P.; Ben Assayag, G.; Gierak, J.; Flicstein, J.; Maar-Stumm, M.; van den Bergh, H. Direct writing of gold nanostructures using a gold-cluster compound and a focused-ion beam. J. Appl. Phys. 1993, 74, 7588–7591. [Google Scholar] [CrossRef]
- Minamimoto, H.; Irie, H.; Uematsu, T.; Tsuda, T.; Imanishi, A.; Seki, S.; Kuwabata, S. Fine Patterning of Silver Metal by Electron Beam Irradiation onto Room-temperature Ionic Liquid. Chem. Lett. 2014, 44, 312–314. [Google Scholar] [CrossRef] [Green Version]
- Berger, L.; Jurczyk, J.; Madajska, K.; Szymańska, I.B.; Hoffmann, P.; Utke, I. Room Temperature Direct Electron Beam Lithography in a Condensed Copper Carboxylate. Micromachines 2021, 12, 580. [Google Scholar] [CrossRef]
- Utke, I.; Swiderek, P.; Höflich, K.; Madajska, K.; Jurczyk, J.; Martinović, P.; Szymańska, I.B. Coordination and organometallic precursors of group 10 and 11: Focused electron beam induced deposition of metals and insight gained from chemical vapour deposition, atomic layer deposition, and fundamental surface and gas phase studies. Coord. Chem. Rev. 2022, 485, 213851. [Google Scholar] [CrossRef]
- Szłyk, E.; Łakomska, I.; Grodzicki, A. Thermal and spectroscopic studies of the Ag(I) salts with fluorinated carboxylic and sulfonic acid residues. Thermochim. Acta 1993, 223, 207–212. [Google Scholar] [CrossRef]
- Szłyk, E.; Szymańska, I. Studies of new volatile copper(I) complexes with triphenylphosphite and perfluorinated carboxylates. Polyhedron 1999, 18, 2941–2948. [Google Scholar] [CrossRef]
- Bret, T.; Hofmann, T.; Edinger, K. Industrial perspective on focused electron beam-induced processes. Appl. Phys. A Mater. Sci. Processing 2014, 117, 1607–1614. [Google Scholar] [CrossRef]
- Noh, J.H.; Stanford, M.G.; Lewis, B.B.; Fowlkes, J.D.; Plank, H.; Rack, P.D. Nanoscale electron beam-induced deposition and purification of ruthenium for extreme ultraviolet lithography mask repair. Appl. Phys. A 2014, 117, 1705–1713. [Google Scholar] [CrossRef]
- Jurczyk, J.; Brewer, C.R.; Hawkins, O.M.; Polyakov, M.N.; Kapusta, C.; McElwee-White, L.; Utke, I. Focused Electron Beam-Induced Deposition and Post-Growth Purification Using the Heteroleptic Ru Complex (η3-C3H5)Ru(CO)3Br. ACS Appl. Mater. Interfaces 2019, 11, 28164–28171. [Google Scholar] [CrossRef] [Green Version]
- Kneipp, K.; Moskovitz, M.; Kneipp, H. Surface-Enhanced Raman Scattering, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2006; p. 466. [Google Scholar] [CrossRef]
- Bozhevolnyi, S.I.; Khurgin, J.B. The case for quantum plasmonics. Nat. Photonics 2017, 11, 398–400. [Google Scholar] [CrossRef]
- Scheuer, V.; Koops, H.; Tschudi, T. Electron beam decomposition of carbonyls on silicon. Microelectron. Eng. 1986, 5, 423–430. [Google Scholar] [CrossRef]
- Berger, L.; Madajska, K.; Szymanska, I.B.; Höflich, K.; Polyakov, M.N.; Jurczyk, J.; Guerra-Nuñez, C.; Utke, I. Gas-assisted silver deposition with a focused electron beam. Beilstein J. Nanotechnol. 2018, 9, 224–232. [Google Scholar] [CrossRef] [Green Version]
- Berger, L.; Jurczyk, J.; Madajska, K.; Edwards, T.E.J.; Szymańska, I.; Hoffmann, P.; Utke, I. High-Purity Copper Structures from a Perfluorinated Copper Carboxylate Using Focused Electron Beam Induced Deposition and Post-Purification. ACS Appl. Electron. Mater. 2020, 2, 1989–1996. [Google Scholar] [CrossRef]
- Höflich, K.; Jurczyk, J.M.; Madajska, K.; Götz, M.; Berger, L.; Guerra-Nuñez, C.; Haverkamp, C.; Szymanska, I.; Utke, I. Towards the third dimension in direct electron beam writing of silver. Beilstein J. Nanotechnol. 2018, 9, 842–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szłyk, E.; Piszczek, P.; Grodzicki, A.; Chaberski, M.; Goliński, A.; Szatkowski, J.; Błaszczyk, T. CVD of AgI Complexes with Tertiary Phosphines and Perfluorinated Carboxylates—A New Class of Silver Precursors. Chem. Vap. Depos. 2001, 7, 111–116. [Google Scholar] [CrossRef]
- Liao, W.; Ekerdt, J.G. Ru nucleation and thin film smoothness improvement with ammonia during chemical vapor deposition. J. Vac. Sci. Technol. A 2016, 34, 031508. [Google Scholar] [CrossRef]
- Gaur, R.; Mishra, L.; Siddiqi, M.A.; Atakan, B. Ruthenium complexes as precursors for chemical vapor-deposition (CVD). RSC Adv. 2014, 4, 33785–33805. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Gao, F.; Kaltchev, M.; Tysoe, W.T. The effect of electron beam irradiation on the chemistry of molybdenum hexacarbonyl on thin alumina films in ultrahigh vacuum. J. Mol. Catal. A Chem. 2004, 209, 135–144. [Google Scholar] [CrossRef]
- Ramsier, R.D.; Henderson, M.A.; Yates, J.T. Electron induced decomposition of Ni(CO)4 adsorbed on Ag(111). Surf. Sci. 1991, 257, 9–21. [Google Scholar] [CrossRef]
- Hauchard, C.; Rowntree, P.A. Low-energy electron-induced decarbonylation of Fe(CO)5 films adsorbed on Au(111) surfaces. Can. J. Chem. 2011, 89, 1163–1173. [Google Scholar] [CrossRef]
- Henderson, M.A.; Ramsier, R.D.; Yates, J.T. Low-energy electron induced decomposition of Fe(CO)5 adsorbed on Ag(111). Surf. Sci. 1991, 259, 173–182. [Google Scholar] [CrossRef]
- Hauchard, C.; Pépin, C.; Rowntree, P. Fe(CO)5 Thin Films Adsorbed on Au(111) and on Self-Assembled Organic Monolayers: I. Structure. Langmuir 2005, 21, 9154–9165. [Google Scholar] [CrossRef]
- Itikawa, Y.; Mason, N. Cross Sections for Electron Collisions with Water Molecules. J. Phys. Chem. Ref. Data 2005, 34, 1–22. [Google Scholar] [CrossRef]
- Martinović, P.; Rohdenburg, M.; Butrymowicz, A.; Sarigül, S.; Huth, P.; Denecke, R.; Szymańska, I.B.; Swiderek, P. Electron-Induced Decomposition of Different Silver(I) Complexes: Implications for the Design of Precursors for Focused Electron Beam Induced Deposition. Nanomaterials 2022, 12, 1687. [Google Scholar] [CrossRef] [PubMed]
- Höflich, K.; Jurczyk, J.; Zhang, Y.; Puydinger dos Santos, M.V.; Götz, M.; Guerra-Nuñez, C.; Best, J.P.; Kapusta, C.; Utke, I. Direct Electron Beam Writing of Silver-Based Nanostructures. ACS Appl. Mater. Interfaces 2017, 9, 24071–24077. [Google Scholar] [CrossRef] [PubMed]
- Porrati, F.; Sachser, R.; Huth, M. The transient electrical conductivity of W-based electron-beam-induced deposits during growth, irradiation and exposure to air. Nanotechnology 2009, 20, 195301. [Google Scholar] [CrossRef] [PubMed]
- van Dorp, W.F.; Hansen, T.W.; Wagner, J.B.; De Hosson, J.T.M. The role of electron-stimulated desorption in focused electron beam induced deposition. Beilstein J. Nanotechnol. 2013, 4, 474–480. [Google Scholar] [CrossRef] [Green Version]
- Massey, S.; Bass, A.D.; Sanche, L. Role of Low-Energy Electrons (<35 eV) in the Degradation of Fe(CO)5 for Focused Electron Beam Induced Deposition Applications: Study by Electron Stimulated Desorption of Negative and Positive Ions. J. Phys. Chem. C 2015, 119, 12708–12719. [Google Scholar] [CrossRef]
- Ferreira da Silva, F.; Thorman, R.M.; Bjornsson, R.; Lu, H.; McElwee-White, L.; Ingólfsson, O. Dissociation of the FEBID precursor cis-Pt(CO)2Cl2 driven by low-energy electrons. Phys. Chem. Chem. Phys. 2020, 22, 6100–6108. [Google Scholar] [CrossRef]
- Thorman, R.M.; Jensen, P.A.; Yu, J.-C.; Matsuda, S.J.; McElwee-White, L.; Ingólfsson, O.; Fairbrother, D.H. Electron-Induced Reactions of Ru(CO)4I2: Gas Phase, Surface, and Electron Beam-Induced Deposition. J. Phys. Chem. C 2020, 124, 10593–10604. [Google Scholar] [CrossRef]
- Neustetter, M.; Jabbour Al Maalouf, E.; Limão-Vieira, P.; Denifl, S. Fragmentation pathways of tungsten hexacarbonyl clusters upon electron ionization. J. Chem. Phys. 2016, 145, 054301. [Google Scholar] [CrossRef]
- Wnorowski, K.; Stano, M.; Matias, C.; Denifl, S.; Barszczewska, W.; Matejčík, Š. Low-energy electron interactions with tungsten hexacarbonyl—W(CO)6. Rapid Commun. Mass Spectrom. 2012, 26, 2093–2098. [Google Scholar] [CrossRef]
- Friedli, V.; Utke, I. Optimized molecule supply from nozzle-based gas injection systems for focused electron- and ion-beam induced deposition and etching: Simulation and experiment. J. Phys. D Appl. Phys. 2009, 42, 125305. [Google Scholar] [CrossRef]
- de Vera, P.; Azzolini, M.; Sushko, G.; Abril, I.; Garcia-Molina, R.; Dapor, M.; Solov’yov, I.A.; Solov’yov, A.V. Multiscale simulation of the focused electron beam induced deposition process. Sci. Rep. 2020, 10, 20827. [Google Scholar] [CrossRef] [PubMed]
- van Dorp, W.F.; Wnuk, J.D.; Gorham, J.M.; Fairbrother, D.H.; Madey, T.E.; Hagen, C.W. Electron induced dissociation of trimethyl (methylcyclopentadienyl) platinum (IV): Total cross section as a function of incident electron energy. J. Appl. Phys. 2009, 106, 074903. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurczyk, J.; Pillatsch, L.; Berger, L.; Priebe, A.; Madajska, K.; Kapusta, C.; Szymańska, I.B.; Michler, J.; Utke, I. In Situ Time-of-Flight Mass Spectrometry of Ionic Fragments Induced by Focused Electron Beam Irradiation: Investigation of Electron Driven Surface Chemistry inside an SEM under High Vacuum. Nanomaterials 2022, 12, 2710. https://doi.org/10.3390/nano12152710
Jurczyk J, Pillatsch L, Berger L, Priebe A, Madajska K, Kapusta C, Szymańska IB, Michler J, Utke I. In Situ Time-of-Flight Mass Spectrometry of Ionic Fragments Induced by Focused Electron Beam Irradiation: Investigation of Electron Driven Surface Chemistry inside an SEM under High Vacuum. Nanomaterials. 2022; 12(15):2710. https://doi.org/10.3390/nano12152710
Chicago/Turabian StyleJurczyk, Jakub, Lex Pillatsch, Luisa Berger, Agnieszka Priebe, Katarzyna Madajska, Czesław Kapusta, Iwona B. Szymańska, Johann Michler, and Ivo Utke. 2022. "In Situ Time-of-Flight Mass Spectrometry of Ionic Fragments Induced by Focused Electron Beam Irradiation: Investigation of Electron Driven Surface Chemistry inside an SEM under High Vacuum" Nanomaterials 12, no. 15: 2710. https://doi.org/10.3390/nano12152710
APA StyleJurczyk, J., Pillatsch, L., Berger, L., Priebe, A., Madajska, K., Kapusta, C., Szymańska, I. B., Michler, J., & Utke, I. (2022). In Situ Time-of-Flight Mass Spectrometry of Ionic Fragments Induced by Focused Electron Beam Irradiation: Investigation of Electron Driven Surface Chemistry inside an SEM under High Vacuum. Nanomaterials, 12(15), 2710. https://doi.org/10.3390/nano12152710