How Hydrodynamic Phonon Transport Determines the Convergence of Thermal Conductivity in Two-Dimensional Materials
Abstract
:1. Introduction
2. Computational Method
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
thermal conductivity | |
cutoff radius | |
NN | nearest neighbor |
reduced Planck constant | |
phonon frequency | |
Boltzmann constant | |
T | temperature |
system volume | |
equilibrium Bose–Einstein distribution | |
phonon group velocity | |
phonon lifetime | |
mode specific heat | |
Cartesian coordinate directions | |
m | atomic mass |
i, j, k | atomic indices |
thermal conductivities from the iterative solution | |
thermal conductivities from the relaxation time approximation | |
normal scattering rates | |
Umklapp scattering rates | |
averaged normal scattering rates | |
averaged Umklapp scattering rates |
References
- Chen, J.; Xu, X.; Zhou, J.; Li, B. Interfacial thermal resistance: Past, present, and future. Rev. Mod. Phys. 2022, 94, 025002. [Google Scholar] [CrossRef]
- Qian, X.; Zhou, J.; Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 2021, 20, 1188–1202. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Zhang, Z.; Li, D.; Chen, J.; Zhang, G. Emerging Theory, Materials, and Screening Methods: New Opportunities for Promoting Thermoelectric Performance. Ann. Phys. 2019, 531, 1800437. [Google Scholar] [CrossRef]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Cai, Q.; Scullion, D.; Gan, W.; Falin, A.; Zhang, S.; Watanabe, K.; Taniguchi, T.; Chen, Y. High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci. Adv. 2019, 5, eaav0129. [Google Scholar] [CrossRef]
- He, J.; Ouyang, Y.; Yu, C.; Jiang, P.; Ren, W.; Chen, J. Lattice thermal conductivity of β12 and x3 borophene. Chin. Phys. B 2020, 29, 126503. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, J.; Wan, X.; Li, Q. High intrinsic lattice thermal conductivity in monolayer MoSi2N4. New J. Phys. 2021, 23, 033005. [Google Scholar] [CrossRef]
- Ren, W.; Ouyang, Y.; Jiang, P.; Yu, C.; He, J.; Chen, J. The Impact of Interlayer Rotation on Thermal Transport Across Graphene/Hexagonal Boron Nitride van der Waals Heterostructure. Nano Lett. 2021, 21, 2634–2641. [Google Scholar] [CrossRef]
- Su, L.; Wang, D.; Wang, S.; Qin, B.; Wang, Y.; Qin, Y.; Jin, Y.; Chang, C.; Zhao, L.-D. High thermoelectric performance realized through manipulating layered phonon-electron decoupling. Science 2022, 375, 1385–1389. [Google Scholar] [CrossRef]
- Roychowdhury, S.; Ghosh, T.; Arora, R.; Samanta, M.; Xie, L.; Singh, N.K.; Soni, A.; He, J.; Waghmare, U.V.; Biswas, K. Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2. Science 2021, 371, 722–727. [Google Scholar] [CrossRef]
- He, J.; Hu, Y.; Li, D.; Chen, J. Ultra-low lattice thermal conductivity and promising thermoelectric figure of merit in borophene via chlorination. Nano Res. 2022, 15, 3804–3811. [Google Scholar] [CrossRef]
- Xu, X.; Chen, J.; Li, B. Phonon thermal conduction in novel 2D materials. J. Phys. Condens. Matter. 2016, 28, 483001. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Guo, Y.; Bescond, M.; Chen, J.; Nomura, M.; Volz, S. Coherent thermal transport in nano-phononic crystals: An overview. APL Mater. 2021, 9, 081102. [Google Scholar] [CrossRef]
- An, M.; Chen, D.; Ma, W.; Hu, S.; Zhang, X. Directly visualizing the crossover from incoherent to coherent phonons in two-dimensional periodic MoS2/MoSe2 arrayed heterostructure. Int. J. Heat Mass Transf. 2021, 178, 121630. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, Y.; Bescond, M.; Chen, J.; Nomura, M.; Volz, S. Generalized decay law for particlelike and wavelike thermal phonons. Phys. Rev. B 2021, 103, 184307. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, Y.; Bescond, M.; Chen, J.; Nomura, M.; Volz, S. Heat Conduction Theory Including Phonon Coherence. Phys. Rev. Lett. 2022, 128, 015901. [Google Scholar] [CrossRef]
- Zhang, Z.; Guo, Y.; Bescond, M.; Chen, J.; Nomura, M.; Volz, S. How coherence is governing diffuson heat transfer in amorphous solids. NPJ Comput. Mater. 2022, 8, 96. [Google Scholar] [CrossRef]
- Gupta, R.; Dongre, B.; Bera, C.; Carrete, J. The Effect of Janus Asymmetry on Thermal Transport in SnSSe. J. Phys. Chem. C 2020, 124, 17476–17484. [Google Scholar] [CrossRef]
- Lu, S.; Ren, W.; He, J.; Yu, C.; Jiang, P.; Chen, J. Enhancement of the lattice thermal conductivity of two-dimensional functionalized MXenes by inversion symmetry breaking. Phys. Rev. B 2022, 105, 165301. [Google Scholar] [CrossRef]
- Feng, T.; Lindsay, L.; Ruan, X. Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids. Phys. Rev. B 2017, 96, 161201. [Google Scholar] [CrossRef]
- Feng, T.; Ruan, X. Four-phonon scattering reduces intrinsic thermal conductivity of graphene and the contributions from flexural phonons. Phys. Rev. B 2018, 97, 045202. [Google Scholar] [CrossRef]
- Yu, C.; Hu, Y.; He, J.; Lu, S.; Li, D.; Chen, J. Strong four-phonon scattering in monolayer and hydrogenated bilayer BAs with horizontal mirror symmetry. Appl. Phys. Lett. 2022, 120, 132201. [Google Scholar] [CrossRef]
- Ouyang, Y.; Yu, C.; He, J.; Jiang, P.; Ren, W.; Chen, J. Accurate description of high-order phonon anharmonicity and lattice thermal conductivity from molecular dynamics simulations with machine learning potential. Phys. Rev. B 2022, 105, 115202. [Google Scholar] [CrossRef]
- Zhang, Z.; Ouyang, Y.; Cheng, Y.; Chen, J.; Li, N.; Zhang, G. Size-dependent phononic thermal transport in low-dimensional nanomaterials. Phys. Rep. 2020, 860, 1–26. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, M. Phonon hydrodynamics and its applications in nanoscale heat transport. Phys. Rep. 2015, 595, 1–44. [Google Scholar] [CrossRef]
- Cepellotti, A.; Fugallo, G.; Paulatto, L.; Lazzeri, M.; Mauri, F.; Marzari, N. Phonon hydrodynamics in two-dimensional materials. Nat. Commun. 2015, 6, 6400. [Google Scholar] [CrossRef]
- Lee, S.; Broido, D.; Esfarjani, K.; Chen, G. Hydrodynamic phonon transport in suspended graphene. Nat. Commun. 2015, 6, 6290. [Google Scholar] [CrossRef]
- Zhang, Z.; Ouyang, Y.; Guo, Y.; Nakayama, T.; Nomura, M.; Volz, S.; Chen, J. Hydrodynamic phonon transport in bulk crystalline polymers. Phys. Rev. B 2020, 102, 195302. [Google Scholar] [CrossRef]
- Ding, Z.; Zhou, J.; Song, B.; Chiloyan, V.; Li, M.; Liu, T.H.; Chen, G. Phonon Hydrodynamic Heat Conduction and Knudsen Minimum in Graphite. Nano Lett. 2018, 18, 638–649. [Google Scholar] [CrossRef]
- Yu, C.; Ouyang, Y.; Chen, J. A perspective on the hydrodynamic phonon transport in two-dimensional materials. J. Appl. Phys. 2021, 130, 010902. [Google Scholar] [CrossRef]
- Lindsay, L.; Li, W.; Carrete, J.; Mingo, N.; Broido, D.A.; Reinecke, T.L. Phonon thermal transport in strained and unstrained graphene from first principles. Phys. Rev. B 2014, 89, 155426. [Google Scholar] [CrossRef]
- Jain, A.; McGaughey, A.J. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep. 2015, 5, 8501. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, J.; Li, B. Negative Gaussian curvature induces significant suppression of thermal conduction in carbon crystals. Nanoscale 2017, 9, 14208–14214. [Google Scholar] [CrossRef]
- Lindsay, L.; Hua, C.; Ruan, X.L.; Lee, S. Survey of ab initio phonon thermal transport. Mater. Today Phys. 2018, 7, 106–120. [Google Scholar] [CrossRef]
- Taheri, A.; Pisana, S.; Singh, C.V. Importance of quadratic dispersion in acoustic flexural phonons for thermal transport of two-dimensional materials. Phys. Rev. B 2021, 103, 235426. [Google Scholar] [CrossRef]
- Liu, P.-F.; Bo, T.; Xu, J.; Yin, W.; Zhang, J.; Wang, F.; Eriksson, O.; Wang, B.-T. First-principles calculations of the ultralow thermal conductivity in two-dimensional group-IV selenides. Phys. Rev. B 2018, 98, 235426. [Google Scholar] [CrossRef]
- Taheri, A.; Da Silva, C.; Amon, C.H. Phonon thermal transport in β−NX(X = P,As,Sb) monolayers: A first-principles study of the interplay between harmonic and anharmonic phonon properties. Phys. Rev. B 2019, 99, 235425. [Google Scholar] [CrossRef]
- Ren, W.; Zhang, Z.; Chen, C.; Ouyang, Y.; Li, N.; Chen, J. Phononic Thermal Transport in Yttrium Hydrides Allotropes. Front. Mater. 2020, 7, 569090. [Google Scholar] [CrossRef]
- Jain, A.; McGaughey, A.J.H. Effect of exchange–correlation on first-principles-driven lattice thermal conductivity predictions of crystalline silicon. Comput. Mater. Sci. 2015, 110, 115–120. [Google Scholar] [CrossRef]
- Qin, G.; Hu, M. Accelerating evaluation of converged lattice thermal conductivity. NPJ Comput. Mater. 2018, 4, 3. [Google Scholar] [CrossRef]
- Xie, H.; Gu, X.; Bao, H. Effect of the accuracy of interatomic force constants on the prediction of lattice thermal conductivity. Comput. Mater. Sci. 2017, 138, 368–376. [Google Scholar] [CrossRef]
- Taheri, A.; Da Silva, C.; Amon, C.H. First-principles phonon thermal transport in graphene: Effects of exchange-correlation and type of pseudopotential. J. Appl. Phys. 2018, 123, 215105. [Google Scholar] [CrossRef]
- Qin, G.; Qin, Z.; Wang, H.; Hu, M. On the diversity in the thermal transport properties of graphene: A first-principles-benchmark study testing different exchange-correlation functionals. Comput. Mater. Sci. 2018, 151, 153–159. [Google Scholar] [CrossRef]
- Sun, Z.; Yuan, K.; Chang, Z.; Bi, S.; Zhang, X.; Tang, D. Ultra-low thermal conductivity and high thermoelectric performance of two-dimensional triphosphides (InP3, GaP3, SbP3 and SnP3): A comprehensive first-principles study. Nanoscale 2020, 12, 3330–3342. [Google Scholar] [CrossRef] [PubMed]
- Lindroth, D.O.; Erhart, P. Thermal transport in van der Waals solids from first-principles calculations. Phys. Rev. B 2016, 94, 115205. [Google Scholar] [CrossRef]
- Kundu, A.; Yang, X.; Ma, J.; Feng, T.; Carrete, J.; Ruan, X.; Madsen, G.K.H.; Li, W. Ultrahigh Thermal Conductivity of theta-Phase Tantalum Nitride. Phys. Rev. Lett. 2021, 126, 115901. [Google Scholar] [CrossRef]
- Lee, S.; Esfarjani, K.; Luo, T.; Zhou, J.; Tian, Z.; Chen, G. Resonant bonding leads to low lattice thermal conductivity. Nat. Commun. 2014, 5, 4525. [Google Scholar] [CrossRef]
- Lindsay, L.; Broido, D.A.; Reinecke, T.L. Ab initiothermal transport in compound semiconductors. Phys. Rev. B 2013, 87, 165201. [Google Scholar] [CrossRef]
- Wang, N.; Shen, C.; Sun, Z.; Xiao, H.; Zhang, H.; Yin, Z.; Qiao, L. High-Temperature Thermoelectric Monolayer Bi2TeSe2 with High Power Factor and Ultralow Thermal Conductivity. ACS Appl. Energ. Mater. 2022, 5, 2564–2572. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 78, 3865–3868. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef]
- Li, W.; Carrete, J.; Katcho, N.A.; Mingo, N. ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 2014, 185, 1747–1758. [Google Scholar] [CrossRef]
- Feng, T.; Ruan, X. Quantum mechanical prediction of four-phonon scattering rates and reduced thermal conductivity of solids. Phys. Rev. B 2016, 93, 045202. [Google Scholar] [CrossRef]
- Tong, Z.; Yang, X.; Feng, T.; Bao, H.; Ruan, X. First-principles predictions of temperature-dependent infrared dielectric function of polar materials by including four-phonon scattering and phonon frequency shift. Phys. Rev. B 2020, 101, 125416. [Google Scholar] [CrossRef]
- Feng, T.; O’Hara, A.; Pantelides, S.T. Quantum prediction of ultra-low thermal conductivity in lithium intercalation materials. Nano Energy 2020, 75, 104916. [Google Scholar] [CrossRef]
- Yang, X.; Feng, T.; Li, J.; Ruan, X. Stronger role of four-phonon scattering than three-phonon scattering in thermal conductivity of III-V semiconductors at room temperature. Phys. Rev. B 2019, 100, 245203. [Google Scholar] [CrossRef]
- Gu, X.; Fan, Z.; Bao, H.; Zhao, C.Y. Revisiting phonon-phonon scattering in single-layer graphene. Phys. Rev. B 2019, 100, 064306. [Google Scholar] [CrossRef]
- Xie, H.; Ouyang, T.; Germaneau, É.; Qin, G.; Hu, M.; Bao, H. Large tunability of lattice thermal conductivity of monolayer silicene via mechanical strain. Phys. Rev. B 2016, 93, 075404. [Google Scholar] [CrossRef]
- Fugallo, G.; Cepellotti, A.; Paulatto, L.; Lazzeri, M.; Marzari, N.; Mauri, F. Thermal conductivity of graphene and graphite: Collective excitations and mean free paths. Nano Lett. 2014, 14, 6109–6114. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, L.; Broido, D.A.; Mingo, N. Flexural phonons and thermal transport in graphene. Phys. Rev. B 2010, 82, 115427. [Google Scholar] [CrossRef]
- Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E.P.; Nika, D.L.; Balandin, A.A.; Bao, W.; Miao, F.; Lau, C.N. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 2008, 92, 151911. [Google Scholar] [CrossRef]
- Gu, X.; Yang, R. First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene. J. Appl. Phys. 2015, 117, 025102. [Google Scholar] [CrossRef]
- Qin, G.; Qin, Z.; Yue, S.Y.; Yan, Q.B.; Hu, M. External electric field driving the ultra-low thermal conductivity of silicene. Nanoscale 2017, 9, 7227–7234. [Google Scholar] [CrossRef]
- Han, Y.; Dong, J.; Qin, G.; Hu, M. Phonon transport in the ground state of two-dimensional silicon and germanium. RSC Adv. 2016, 6, 69956–69965. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, X.; Luo, T. The impact of hydrogenation on the thermal transport of silicene. 2D Mater. 2017, 4, 025002. [Google Scholar] [CrossRef]
- Parrish, K.D.; Jain, A.; Larkin, J.M.; Saidi, W.A.; McGaughey, A.J.H. Origins of thermal conductivity changes in strained crystals. Phys. Rev. B 2014, 90, 235201. [Google Scholar] [CrossRef]
- Broido, D.A.; Malorny, M.; Birner, G.; Mingo, N.; Stewart, D.A. Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett. 2007, 91, 231922. [Google Scholar] [CrossRef]
- Fulkerson, W.; Moore, J.P.; Williams, R.K.; Graves, R.S.; McElroy, D.L. Thermal Conductivity, Electrical Resistivity, and Seebeck Coefficient of Silicon from 100 to 1300 °K. Phys. Rev. 1968, 167, 765–782. [Google Scholar] [CrossRef]
- Glassbrenner, C.J.; Slack, G.A. Thermal Conductivity of Silicon and Germanium from 3 °K to the Melting Point. Phys. Rev. 1964, 134, A1058–A1069. [Google Scholar] [CrossRef]
- Shanks, H.R.; Maycock, P.D.; Sidles, P.H.; Danielson, G.C. Thermal Conductivity of Silicon from 300 to 1400 °K. Phys. Rev. 1963, 130, 1743–1748. [Google Scholar] [CrossRef]
- Nika, D.L.; Pokatilov, E.P.; Askerov, A.S.; Balandin, A.A. Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Phys. Rev. B 2009, 79, 155413. [Google Scholar] [CrossRef]
- Peng, B.; Zhang, D.; Zhang, H.; Shao, H.; Ni, G.; Zhu, Y.; Zhu, H. The conflicting role of buckled structure in phonon transport of 2D group-IV and group-V materials. Nanoscale 2017, 9, 7397–7407. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Lu, S.; Ouyang, Y.; Chen, J. How Hydrodynamic Phonon Transport Determines the Convergence of Thermal Conductivity in Two-Dimensional Materials. Nanomaterials 2022, 12, 2854. https://doi.org/10.3390/nano12162854
Jiang J, Lu S, Ouyang Y, Chen J. How Hydrodynamic Phonon Transport Determines the Convergence of Thermal Conductivity in Two-Dimensional Materials. Nanomaterials. 2022; 12(16):2854. https://doi.org/10.3390/nano12162854
Chicago/Turabian StyleJiang, Jianhui, Shuang Lu, Yulou Ouyang, and Jie Chen. 2022. "How Hydrodynamic Phonon Transport Determines the Convergence of Thermal Conductivity in Two-Dimensional Materials" Nanomaterials 12, no. 16: 2854. https://doi.org/10.3390/nano12162854
APA StyleJiang, J., Lu, S., Ouyang, Y., & Chen, J. (2022). How Hydrodynamic Phonon Transport Determines the Convergence of Thermal Conductivity in Two-Dimensional Materials. Nanomaterials, 12(16), 2854. https://doi.org/10.3390/nano12162854