The Release of Non-Extractable Ferulic Acid from Cereal By-Products by Enzyme-Assisted Hydrolysis for Possible Utilization in Green Synthesis of Silver Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Plant Material Preparation for Enzyme-Assisted Hydrolysis
2.3. Chemicals and Reagents
2.4. Enzymes
2.5. Preparation of the Hydrolysates by Enzyme-Assisted Hydrolysis of Rye Bran
2.6. Purification of trans-FA and trans-iso-FA from Rye Bran Hydrolysates Using Solid-Phase Extraction with Strata-X and SupelTM-Select HLB Columns
2.6.1. Small-Scale Purification
2.6.2. Large-Scale Purification
2.7. Preparation of Silver Nanoparticles Using Rye Bran-Derived Mixture of trans-FA and trans-iso-FA
2.8. Preparation of Standard Stock Solution
2.9. The HPLC-ESI-TQ-MS/MS Analytical Conditions for Ferulic Acid
2.10. The HPLC-RID Conditions for Carbohydrates Analysis
2.11. Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDX)
2.12. In Vitro Susceptibility Tests
2.12.1. Minimum Inhibitory Concentration (MIC)
2.12.2. Minimum Bactericidal Concentration (MBC)
2.12.3. Disk Diffusion Method
2.13. Statistical Analysis
3. Results and Discussion
3.1. Release of trans-Ferulic Acid trans-iso-Ferulic Acids from Rye Bran Utilizing Enzyme-Assisted Hydrolysis
3.2. Release of Mono- and Disaccharides during Enzyme-Assisted Hydrolysis of Rye Bran
3.3. Changes in Morphology of the Rye Bran Affected by Enzyme-Assisted Hydrolysis
3.4. Structural Analysis of Silver Nanoparticles
3.5. Antimicrobial Activity of Silver Nanoparticles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gāliņa, D.; Radenkovs, V.; Kviesis, J.; Valdovska, A. Effect of essential pils supplemented with caprylic acid and sodium chloride against faecal ESBL-producing Escherichia coli isolated from pigs. Antibiotics 2022, 11, 461. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [PubMed]
- Baetke, S.C.; Lammers, T.; Kiessling, F. Applications of nanoparticles for diagnosis and therapy of cancer. Br. J. Radiol. 2015, 88, 20150207. [Google Scholar] [CrossRef] [PubMed]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, V.; Tiwari, M.; Solanki, V. Polyvinylpyrrolidone-capped silver nanoparticle inhibits infection of carbapenem-resistant strain of Acinetobacter baumannii in the human pulmonary epithelial cell. Front. Immunol. 2017, 8, 973. [Google Scholar] [CrossRef] [PubMed]
- Melkamu, W.W.; Bitew, L.T. Green synthesis of silver nanoparticles using Hagenia abyssinica (Bruce) J.F. Gmel plant leaf extract and their antibacterial and anti-oxidant activities. Heliyon 2021, 7, e08459. [Google Scholar] [CrossRef]
- Korzekwa, K.; Kędziora, A.; Stańczykiewicz, B.; Bugla-Płoskońska, G.; Wojnicz, D. Benefits of usage of immobilized silver nanoparticles as Pseudomonas aeruginosa antibiofilm factors. Int. J. Mol. Sci. 2022, 23, 284. [Google Scholar] [CrossRef]
- Deeksha, B.; Sadanand, V.; Hariram, N.; Rajulu, A.V. Preparation and properties of cellulose nanocomposite fabrics with in situ generated silver nanoparticles by bioreduction method. J. Bioresour. Bioprod. 2021, 6, 75–81. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.Y.; Huang, J.; Chen, C.Y.; Wang, Z.X.; Xie, H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 2020, 10, 8996–9031. [Google Scholar] [CrossRef]
- Yorseng, K.; Siengchin, S.; Ashok, B.; Rajulu, A.V. Nanocomposite egg shell powder with in situ generated silver nanoparticles using inherent collagen as reducing agent. J. Bioresour. Bioprod. 2020, 5, 101–107. [Google Scholar] [CrossRef]
- Agarwal, P.; Patel, P.; Kachhwaha, S.; Kothari, S.L. Carbohydrates as potent nanosynthesizers: A comparative account. J. Bionanosci. 2015, 9, 35–42. [Google Scholar] [CrossRef]
- Ratan, Z.A.; Haidere, M.F.; Nurunnabi, M.; Shahriar, S.M.; Ahammad, A.J.S.; Shim, Y.Y.; Reaney, M.J.T.; Cho, J.Y. Green chemistry synthesis of silver nanoparticles and their potential anticancer effects. Cancers 2020, 12, 855. [Google Scholar] [CrossRef]
- Park, S.; Cha, S.H.; Cho, I.; Park, S.; Park, Y.; Cho, S.; Park, Y. Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles. Mater. Sci. Eng. C 2016, 58, 1160–1169. [Google Scholar] [CrossRef]
- Sahu, N.; Soni, D.; Chandrashekhar, B.; Satpute, D.B.; Saravanadevi, S.; Sarangi, B.K.; Pandey, R.A. Synthesis of silver nanoparticles using flavonoids: Hesperidin, naringin and diosmin, and their antibacterial effects and cytotoxicity. Int. Nano Lett. 2016, 6, 173–181. [Google Scholar] [CrossRef]
- Vinicius de Oliveira Brisola Maciel, M.; da Rosa Almeida, A.; Machado, M.H.; Elias, W.C.; Gonçalves da Rosa, C.; Teixeira, G.L.; Noronha, C.M.; Bertoldi, F.C.; Nunes, M.R.; Dutra de Armas, R.; et al. Green synthesis, characteristics and antimicrobial activity of silver nanoparticles mediated by essential oils as reducing agents. Biocatal. Agric. Biotechnol. 2020, 28, 101746. [Google Scholar] [CrossRef]
- Masooleh, A.K.; Ahmadikhah, A.; Saidi, A. Green synthesis of stable silver nanoparticles by the main reduction component of green tea (Camellia sinensis L.). IET Nanobiotechnol. 2019, 13, 183–188. [Google Scholar] [CrossRef]
- Widatalla, H.A.; Yassin, L.F.; Alrasheid, A.A.; Rahman Ahmed, S.A.; Widdatallah, M.O.; Eltilib, S.H.; Mohamed, A.A. Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale Adv. 2022, 4, 911–915. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.S. Phenolic compounds of green tea: Health benefits and technological application in food. Asian Pac. J. Trop. Biomed. 2016, 6, 709–719. [Google Scholar] [CrossRef]
- Radenkovs, V.; Püssa, T.; Juhnevica-Radenkova, K.; Kviesis, J.; Salar, F.J.; Moreno, D.A.; Drudze, I. Wild apple (Malus spp.) by-products as a source of phenolic compounds and vitamin C for food applications. Food Biosci. 2020, 38, 100744. [Google Scholar] [CrossRef]
- Lerma-García, M.J.; Ávila, M.; Simó-Alfonso, E.F.; Ríos, Á.; Zougagh, M. Synthesis of gold nanoparticles using phenolic acids and its application in catalysis. J. Mater. Environ. Sci. 2014, 5, 1919–1926. [Google Scholar]
- Wang, H.Y.; Li, Y.F.; Huang, C.Z. Detection of ferulic acid based on the plasmon resonance light scattering of silver nanoparticles. Talanta 2007, 72, 1698–1703. [Google Scholar] [CrossRef] [PubMed]
- Darroudi, M.; Ahmad, M.B.; Abdullah, A.H.; Ibrahim, N.A.; Shameli, K. Effect of accelerator in green synthesis of silver nanoparticles. Int. J. Mol. Sci. 2010, 11, 3898–3905. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. 2014, 4, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant properties of ferulic acid and its possible application. Ski. Pharmacol. Physiol. 2018, 31, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Dasagrandhi, C.; Park, S.; Jung, W.K.; Kim, Y.M. Antibacterial and biofilm modulating potential of ferulic acid-grafted chitosan against human pathogenic bacteria. Int. J. Mol. Sci. 2018, 19, 2157. [Google Scholar] [CrossRef]
- Peres, D.D.A.; Sarruf, F.D.; de Oliveira, C.A.; Velasco, M.V.R.; Baby, A.R. Ferulic acid photoprotective properties in association with UV filters: Multifunctional sunscreen with improved SPF and UVA-PF. J. Photochem. Photobiol. B Biol. 2018, 185, 46–49. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Díaz-Rubio, M.E.; Saura-Calixto, F. Non-extractable polyphenols, a major dietary antioxidant: Occurrence, metabolic fate and health effects. Nutr. Res. Rev. 2013, 26, 118–129. [Google Scholar] [CrossRef]
- Stavova, E.; Porizka, J.; Stursa, V.; Enev, V.; Divis, P. Extraction of ferulic acid from wheat bran through alkaline and enzymatic hydrolysis. MendelNet 2017, 24, 574–579. [Google Scholar]
- Ideia, P.; Sousa-ferreira, I.; Castilho, P.C. A Novel and simpler alkaline hydrolysis methodology for extraction of ferulic acid from brewer’s spent grain and its (partial) purification through adsorption in a synthetic resin. Foods 2020, 9, 600. [Google Scholar] [CrossRef]
- Radenkovs, V.; Juhnevica-radenkova, K.; Kviesis, J.; Lazdina, D.; Valdovska, A.; Vallejo, F.; Lacis, G. Lignocellulose-degrading enzymes: A biotechnology platform for ferulic acid production from agro-industrial side streams. Foods 2021, 10, 3056. [Google Scholar] [CrossRef]
- Ruiz, R.P. Gravimetric measurements of water. In Handbook of Food Analytical Chemistry, Water, Proteins, Enzymes, Lipids, and Carbohydrates; Wrolstad, R.E., Acree, T.E., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Smith, D., Sporns, P., Eds.; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2005; pp. 5–33. ISBN 9780471709084. [Google Scholar]
- Juhnevica-Radenkova, K.; Kviesis, J.; Moreno, D.A.; Seglina, D.; Vallejo, F.; Valdovska, A.; Radenkovs, V. Highly-efficient release of ferulic acid from agro-industrial by-products via enzymatic hydrolysis with cellulose-degrading enzymes: Part I—The superiority of hydrolytic enzymes versus conventional hydrolysis. Foods 2021, 10, 782. [Google Scholar] [CrossRef] [PubMed]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, M.A.; Subhan, N.; Hossain, H.; Hossain, M.; Reza, H.M.; Rahman, M.M.; Ullah, M.O. Hydroxycinnamic acid derivatives: A potential class of natural compounds for the management of lipid metabolism and obesity. Nutr. Metab. 2016, 13, 27. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
- Pazo-Cepeda, M.V.; Aspromonte, S.G.; Alonso, E. Extraction of ferulic acid and feruloylated arabinoxylo-oligosaccharides from wheat bran using pressurized hot water. Food Biosci. 2021, 44, 101374. [Google Scholar] [CrossRef]
- Čizmić, M.; Babić, S.; Kaštelan-Macan, M. Multi-class determination of pharmaceuticals in wastewaters by solid-phase extraction and liquid chromatography tandem mass spectrometry with matrix effect study. Environ. Sci. Pollut. Res. 2017, 24, 20521–20539. [Google Scholar] [CrossRef] [PubMed]
- Mcdowall, R.D.; Massart, D.L. Analyte isolation by solid phase extraction (SPE) on silica-bonded phases: Classification and recommended practices (Technical Report). Pure Appl. Chem. 1994, 66, 277–304. [Google Scholar] [CrossRef]
- Sun, C.; Wu, Z.; Wang, Z.; Zhang, H. Effect of ethanol/water solvents on phenolic profiles and antioxidant properties of Beijing propolis extracts. Evid.-Based Complement. Altern. Med. 2015, 2015, 595393. [Google Scholar] [CrossRef]
- De Villiers, A.; Lynen, F.; Crouch, A.; Sandra, P. Development of a solid-phase extraction procedure for the simultaneous determination of polyphenols, organic acids and sugars in wine. Chromatographia 2004, 59, 403–409. [Google Scholar] [CrossRef]
- Si, D.; Shang, T.; Liu, X.; Zheng, Z.; Hu, Q.; Hu, C.; Zhang, R. Production and characterization of functional wheat bran hydrolysate rich in reducing sugars, xylooligosaccharides and phenolic acids. Biotechnol. Rep. 2020, 27, e00511. [Google Scholar] [CrossRef]
- Wu, P.; Li, J.; He, T.; Hu, C. The direct conversion of hemicelluloses to selectively produce xylose from corn stover catalysed by maleic acid. BioResources 2019, 14, 816–841. [Google Scholar] [CrossRef]
- Escarnot, E.; Aguedo, M.; Paquot, M. Enzymatic hydrolysis of arabinoxylans from spelt bran and hull. J. Cereal Sci. 2012, 55, 243–253. [Google Scholar] [CrossRef]
- Seal, C.J.; Courtin, C.M.; Venema, K.; de Vries, J. Health benefits of whole grain: Effects on dietary carbohydrate quality, the gut microbiome, and consequences of processing. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2742–2768. [Google Scholar] [CrossRef] [PubMed]
- Kamal-Eldin, A.; Lærke, H.N.; Knudsen, K.E.B.; Lampi, A.M.; Piironen, V.; Adlercreutz, H.; Katina, K.; Poutanen, K.; Åman, P. Physical, microscopic and chemical characterisation of industrial rye and wheat brans from the Nordic countries. Food Nutr. Res. 2009, 53, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Seyama, T.; Shiroma, R.; Ike, M.; Srichuwong, S.; Nagata, K.; Yumiko, A.S.; Kondo, M.; Tokuyasu, K. Efficient recovery of glucose and fructose via enzymatic saccharification of rice straw with soft carbohydrates. Biosci. Biotechnol. Biochem. 2009, 73, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Wang, J.; Zhang, X.; Wolcott, M. Microstructure change in wood cell wall fracture from mechanical pretreatment and its influence on enzymatic hydrolysis. Ind. Crop. Prod. 2017, 97, 498–508. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhou, T.; Wang, Y.; Cao, X.; Wu, S.; Zhao, M.; Wang, H.; Xu, M.; Zheng, B.; Zheng, J.; et al. Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis. Sci. Rep. 2018, 8, 1321. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Liao, A.M.; Thakur, K.; Huang, J.H.; Zhang, J.G.; Wei, Z.J. Modification of wheat bran insoluble dietary fiber with carboxymethylation, complex enzymatic hydrolysis and ultrafine comminution. Food Chem. 2019, 297, 124983. [Google Scholar] [CrossRef]
- Terentyeva, E.A.; Apyari, V.V.; Kochuk, E.V.; Dmitrienko, S.G.; Zolotov, Y.A. Application of Silver Nanoparticles in Spectrophotometry. J. Anal. Chem. 2017, 72, 978–999. [Google Scholar] [CrossRef]
- Alamu, G.A.; Adedokun, O.; Bello, I.T.; Sanusi, Y.K. Plasmonic enhancement of visible light absorption in Ag-TiO2 based dye-sensitized solar cells. Chem. Phys. Impact 2021, 3, 100037. [Google Scholar] [CrossRef]
- Zein, R.; Alghoraibi, I.; Soukkarieh, C.; Ismail, M.T.; Alahmad, A. Influence of polyvinylpyrrolidone concentration on properties and anti-bacterial activity of green synthesized silver nanoparticles. Micromachines 2022, 13, 777. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, L.; Diwakar, S.; Mohankumar, R.; Pandurangan, A.; Jayavel, R. Synthesis, structural and optical properties of PVP encapsulated CdS nanoparticles. Nanomater. Nanotechnol. 2011, 1, 42–48. [Google Scholar] [CrossRef]
- Timakwe, S.; Silwana, B.; Matoetoe, M.C. Electrochemistry as a complementary technique for revealing the influence of reducing agent concentration on AgNPs. ACS Omega 2022, 7, 4921–4931. [Google Scholar] [CrossRef] [PubMed]
- Javan bakht Dalir, S.; Djahaniani, H.; Nabati, F.; Hekmati, M. Characterization and the evaluation of antimicrobial activities of silver nanoparticles biosynthesized from Carya illinoinensis leaf extract. Heliyon 2020, 6, e03624. [Google Scholar] [CrossRef]
- Raza, M.A.; Kanwal, Z.; Rauf, A.; Sabri, A.N.; Riaz, S.; Naseem, S. Size- and shape-dependent antibacterial studies of silver nanoparticles synthesized by wet chemical routes. Nanomaterials 2016, 6, 74. [Google Scholar] [CrossRef]
- Acharya, D.; Singha, K.M.; Pandey, P.; Mohanta, B.; Rajkumari, J.; Singha, L.P. Shape dependent physical mutilation and lethal effects of silver nanoparticles on bacteria. Sci. Rep. 2018, 8, 201. [Google Scholar] [CrossRef]
- Miller, F.A.; Silva, C.L.M.; Brandão, T.R.S. A review on ozone-based treatments for fruit and vegetables preservation. Food Eng. Rev. 2013, 5, 77–106. [Google Scholar] [CrossRef]
- Van Merode, A.E.J.; Van Der Mei, H.C.; Busscher, H.J.; Krom, B.P. Influence of culture heterogeneity in cell surface charge on adhesion and biofilm formation by Enterococcus faecalis. J. Bacteriol. 2006, 188, 2421–2426. [Google Scholar] [CrossRef]
- Niza, E.; Božik, M.; Bravo, I.; Clemente-Casares, P.; Lara-Sanchez, A.; Juan, A.; Klouček, P.; Alonso-Moreno, C. PEI-coated PLA nanoparticles to enhance the antimicrobial activity of carvacrol. Food Chem. 2020, 328, 127131. [Google Scholar] [CrossRef]
- Joshi, A.S.; Singh, P.; Mijakovic, I. Interactions of gold and silver nanoparticles with bacterial biofilms: Molecular interactions behind inhibition and resistance. Int. J. Mol. Sci. 2020, 21, 7658. [Google Scholar] [CrossRef]
- Patil, M.P.; Kim, G. Do Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl. Microbiol. Biotechnol. 2017, 101, 79–92. [Google Scholar] [CrossRef]
- Rajendran, N.; Subramaniam, S.; Raja, M.R.C.; Brindha, P.; Kar Mahapatra, S.; Sivasubramanian, A. Plant phenyl-propanoids-conjugated silver nanoparticles from edible plant Suaeda maritima (L.) dumort. Inhibit proliferation of K562-human myeloid leukemia cells. Artif. Cells Nanomed. Biotechnol. 2017, 45, 1336–1342. [Google Scholar] [CrossRef] [PubMed]
- You, S.; Xiang, Y.; Qi, X.; Mao, R.; Cai, E.; Lan, Y.; Lu, H.; Shen, J.; Deng, H. Harnessing a biopolymer hydrogel reinforced by copper / tannic acid nanosheets for treating bacteria-infected diabetic wounds. Mater. Today Adv. 2022, 15, 100271. [Google Scholar] [CrossRef]
- Mammari, N.; Lamouroux, E.; Boudier, A.; Duval, R.E. Current knowledge on the oxidative-stress-mediated antimicrobial properties of metal-based nanoparticles. Microorganisms 2022, 10, 437. [Google Scholar] [CrossRef] [PubMed]
- Tekin, V.; Kozgus Guldu, O.; Dervis, E.; Yurt Kilcar, A.; Uygur, E.; Biber Muftuler, F.Z. Green synthesis of silver nanoparticles by using eugenol and evaluation of antimicrobial potential. Appl. Organomet. Chem. 2019, 33, e4969. [Google Scholar] [CrossRef]
- Kourmouli, A.; Valenti, M.; van Rijn, E.; Beaumont, H.J.E.; Kalantzi, O.I.; Schmidt-Ott, A.; Biskos, G. Can disc diffusion susceptibility tests assess the antimicrobial activity of engineered nanoparticles? J. Nanopart. Res. 2018, 20, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Parvekar, P.; Palaskar, J.; Metgud, S.; Maria, R.; Dutta, S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater. Investig. Dent. 2020, 7, 105–109. [Google Scholar] [CrossRef] [PubMed]
- El Din, S.N.; El-Tayeb, T.A.; Abou-Aisha, K.; El-Azizi, M. In vitro and in vivo antimicrobial activity of combined therapy of silver nanoparticles and visible blue light against Pseudomonas aeruginosa. Int. J. Nanomed. 2016, 11, 1749–1758. [Google Scholar] [CrossRef] [Green Version]
Major Nutrient Profile, g 100 g−1 DW | ||||||
---|---|---|---|---|---|---|
Type of Bran | Moisture, % | Crude Carbohydrates | Starch | Crude Lipids | Crude Proteins | Dietary Fiber |
Rye | 11.7 ± 0.2 a | 30.9 ± 0.5 b | 18.6 ± 0.0 b | 3.8 ± 0.1 c | 16.9 ± 0.5 a | 36.0 ± 1.9 b |
Commercial Enzyme | Declared Activity | Enzyme Activity | Source | EC Number |
---|---|---|---|---|
Viscozyme® L | 100 FBG g−1 | Endo-1,3-(1,4)-β-d-glucanase, Endo-1,4-β-xylanase, Non-reducing end α-L-arabinofuranosidase | Aspergillus aculeatus | 3.2.1.6 3.2.1.8 3.2.1.55 |
Optimized MRM Parameters | Parameters of Calibration | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Organic Acid | RT, Min | Molecular Formula | Ionization Mode | MRM Transitions | Q1 Pre Bias, V | Collision Energy, V | Q3 Pre Bias, V | Dwell Time, Msec | R2 | RSD, % | LOD, mg mL−1 | LOQ, mg mL−1 |
t-FA | 2.990 | C10H10O4 | [M−H]− | 192.9500→134.0000 | 19.0 | 18.0 | 12.0 | 45.0 | 0.9996 | 5.81 | 0.004 | 0.014 |
192.9500→178.0500 | 14.0 | 15.0 | 10.0 | 45.0 | ||||||||
t-iso-FA | 2.962 | [M+H]+ | 194.9000→177.1500 | −12.0 | −11.0 | −20.0 | 45.0 | 0.9998 | 1.20 | 0.018 | 0.056 | |
194.9000→89.1500 | −21.0 | −33.0 | −19.0 | 45.0 |
Carbohydrate | Control | RB Hydrolysate | Flow-Through Fraction after SPE |
---|---|---|---|
Gly | 0.0 ± 0.0 b | 6.2 ± 0.2 a | 6.0 ± 0.1 a |
Xyl | 0.3 ± 0.0 b | 4.9 ± 0.1 a | 4.6 ± 0.2 a |
Ara | 0.4 ± 0.0 b | 1.6 ± 0.0 a | 1.4 ± 0.0 a |
Fru | n.d. | 1.7 ± 0.0 a | 1.4 ± 0.0 a |
Glu | n.d. | 10.7 ± 0.4 a | 9.0 ± 0.3 b |
Unk | n.d | 0.4 ± 0.0 a | 0.4 ± 0.0 a |
Gala | n.d | 1.2 ± 0.0 a | 1.3 ± 0.0 a |
Suc | 1.8 ± 0.1 a | 0.8 ± 0.0 b | 0.9 ± 0.0 b |
Mal | 0.2 ± 0.0 b | 1.6 ± 0.0 a | 1.4 ± 0.0 a |
Lac | n.d | 0.9 ± 0.0 a | 0.6 ± 0.0 a |
Tot | 2.7 ± 0.1 c | 30.0 ± 0.7 a | 27.0 ± 0.6 b |
Reference Culture | Average Zone of Inhibition, mm | |||
---|---|---|---|---|
FA-ST-AgNPs | FA-RB | FA-RB- AgNPs | FA-ST | |
Pseudomonas aeruginosa ATCC 10145 | 10.0 ± 0.1 b | 5.2 ± 0.3 c | 11.3 ± 0.1 a | 5.0 ± 0.1 c |
Enterococcus faecalis ATCC 29212 | 8.0 ± 0.2 a | 7.1 ± 0.3 b | 7.5 ± 0.2 a | 5.1 ± 0.1 c |
Escherichia coli ATCC 25922 | 10.1 ± 0.4 b | 5.3 ± 0.6 c | 11.4 ± 0.1 a | 5.1 ± 0.1 c |
Staphylococcus aureus ATCC 6538P | 8.2 ± 0.5 b | 6.2 ± 0.3 c | 11.2 ± 0.5 a | 5.3 ± 0.3 c |
Bacillus subtilis ATCC 6633 | 8.1 ± 0.1 b | 6.1 ± 0.2 c | 10.3 ± 0.4 a | 5.5 ± 0.4 c |
Reference Culture | FA-ST-AgNPs | FA-RB | FA-RB-AgNPs | FA-ST | ||||
---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
Pseudomonas aeruginosa ATCC 10145 | 0.05 ± 0.00 c | 0.20 ± 0.01 d* | 5.58 ± 0.17 a | 5.58 ± 0.43 a* | 0.04 ± 0.00 a | 0.69 ± 0.09 c* | 2.78 ± 0.17 b | 2.75 ± 0.24 b* |
Enterococcus faecalis ATCC 29212 | 0.39 ± 0.04 c | 3.13 ± 0.21 b* | 5.58 ± 0.32 a | 11.16 ± 1.76 a* | 0.09 ± 0.00 d | 0.34 ± 0.01 d* | 2.75 ± 0.23 b | ≥2.75 c* |
Escherichia coli ATCC 25922 | 0.10 ± 0.01 c | 0.39 ± 0.05 c* | 2.79 ± 0.28 a | 5.58 ± 0.45 a* | 0.04 ± 0.00 a | 0.17 ± 0.01 d* | 1.38 ± 0.15 b | 2.75 ± 0.19 b* |
Staphylococcus aureus ATCC 6538P | 0.39 ± 0.02 c | 1.56 ± 0.07 b* | 5.58 ± 0.54 a | 11.16 ± 1.93 a* | 0.17 ± 0.00 c | 0.69 ± 0.09 c* | 1.38 ± 0.21 b | 1.38 ± 0.14 b* |
Bacillus subtilis ATCC 6633 | 0.20 ± 0.01 c | 0.78 ± 0.20 c* | 2.79 ± 0.15 a | 2.79 ± 0.13 a* | 0.04 ± 0.00 d | 0.09 ± 0.00 d* | 1.38 ± 0.18 b | 1.38 ± 0.21 b* |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radenkovs, V.; Juhnevica-Radenkova, K.; Jakovlevs, D.; Zikmanis, P.; Galina, D.; Valdovska, A. The Release of Non-Extractable Ferulic Acid from Cereal By-Products by Enzyme-Assisted Hydrolysis for Possible Utilization in Green Synthesis of Silver Nanoparticles. Nanomaterials 2022, 12, 3053. https://doi.org/10.3390/nano12173053
Radenkovs V, Juhnevica-Radenkova K, Jakovlevs D, Zikmanis P, Galina D, Valdovska A. The Release of Non-Extractable Ferulic Acid from Cereal By-Products by Enzyme-Assisted Hydrolysis for Possible Utilization in Green Synthesis of Silver Nanoparticles. Nanomaterials. 2022; 12(17):3053. https://doi.org/10.3390/nano12173053
Chicago/Turabian StyleRadenkovs, Vitalijs, Karina Juhnevica-Radenkova, Dmitrijs Jakovlevs, Peteris Zikmanis, Daiga Galina, and Anda Valdovska. 2022. "The Release of Non-Extractable Ferulic Acid from Cereal By-Products by Enzyme-Assisted Hydrolysis for Possible Utilization in Green Synthesis of Silver Nanoparticles" Nanomaterials 12, no. 17: 3053. https://doi.org/10.3390/nano12173053
APA StyleRadenkovs, V., Juhnevica-Radenkova, K., Jakovlevs, D., Zikmanis, P., Galina, D., & Valdovska, A. (2022). The Release of Non-Extractable Ferulic Acid from Cereal By-Products by Enzyme-Assisted Hydrolysis for Possible Utilization in Green Synthesis of Silver Nanoparticles. Nanomaterials, 12(17), 3053. https://doi.org/10.3390/nano12173053