Preparation of Amino-Functionalized Mesoporous SBA-15 Nanoparticles and the Improved Adsorption of Tannic Acid in Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the SBA-15 Materials
2.3. Synthesis of the Amino-Functionalized SBA-15 Specimens
2.4. Characterization of the Silica Specimens
2.5. Adsorption Studies
3. Results and Discussion
3.1. Analysis of Phase Features and Surface Functional Groups
3.2. Analysis of the Pore Structure
3.3. Surface Morphology of the Mesoporous Silica Samples
3.4. TA Adsorption Study
3.5. Thermodynamic Studies
3.6. Adsorption Isotherm Experiments
3.7. Kinetic Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zielinska, A.; Costa, B.; Ferreira, M.V.; Miguéis, D.; Louros, J.M.S.; Durazzo, A.; Lucarini, M.; Eder, P.; Chaud, M.V.; Morsink, M.; et al. Nanotoxicology and nanosafety: Safety-by-design and testing at a glance. Int. J. Environ. Res. Public Health 2020, 17, 4657. [Google Scholar] [CrossRef] [PubMed]
- Souto, E.B.; Silva, G.F.; Dias-Ferreira, J.; Zielinska, A.; Ventura, F.; Durazzo, A.; Lucarini, M.; Novellino, E.; Santini, A. Nanopharmaceutics: Part I—Clinical trials legislation and good manufacturing practices (GMP) of nanotherapeutics in the EU. Pharmaceutics 2020, 12, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552. [Google Scholar] [CrossRef] [Green Version]
- Xian, Q.; Chen, L.; Fan, W.; Liu, Y.; He, X.; Dan, H.; Zhu, L.; Ding, Y.; Duan, T. Facile synthesis of novel Bi0-SBA-15 adsorbents by an improved impregnation reduction method for highly efficient capture of iodine gas. J. Hazard. Mater. 2022, 424, 127678. [Google Scholar] [CrossRef]
- Chongdar, S.; Bhattacharjee, S.; Azad, S.; Bal, R.; Bhaumik, A. Selective N-formylation of amines catalysed by Ag NPs festooned over amine functionalized SBA-15 utilizing CO2 as C1 source. Mol. Catal. 2021, 516, 111978. [Google Scholar] [CrossRef]
- Vargas-Osorio, Z.; Klotschan, A.; Arango-Ospina, M.; Piñeiro, Y.; Liverani, L.; Rivas, J.; Michálek, M.; Galusek, D.; Boccaccini, A.R. Effect of glycerol and H3PO4 on the bioactivity and degradability of rod-like SBA-15 particles with active surface for bone tissue engineering applications. Microporous Mesoporous Mat. 2022, 329, 111543. [Google Scholar] [CrossRef]
- Su, H.L.; Xu, L.; Hu, X.J.; Chen, F.F.; Li, G.; Yang, Z.K.; Wang, L.P.; Li, H.L. Polymer grafted mesoporous SBA-15 material synthesized via metal-free ATRP as pH-sensitive drug carrier for quercetin. Eur. Polym. J. 2021, 148, 110354. [Google Scholar] [CrossRef]
- Chen, C.; Wang, H.; Chen, Y.; Wei, X.; Zou, W.; Wan, H.; Dong, L.; Guan, G. Layer-by-layer self-assembly of hierarchical flower-like HKUST-1-based composite over amino-tethered SBA-15 with synergistic enhancement for CO2 capture. Chem. Eng. J. 2021, 413, 127396. [Google Scholar] [CrossRef]
- Rajabi, Z.; Javanbakht, M.; Hooshyari, K.; Adibi, M.; Badiei, A. Phosphoric acid doped polybenzimidazole based polymer electrolyte membrane and functionalized SBA-15 mesoporous for elevated temperature fuel cell. Int. J. Hydrogen Energy 2021, 46, 33241–33259. [Google Scholar] [CrossRef]
- Chiani, E.; Azizi, S.N.; Ghasemi, S. PdCu bimetallic nanoparticles decorated on ordered mesoporous silica (SBA-15) /MWCNTs as superior electrocatalyst for hydrogen evolution reaction. Int. J. Hydrogen Energy 2021, 46, 25468–25485. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, R.; Wang, P.; Wang, W. Unit-cell wide SBA-15 type mesoporous silica nanoparticles. Microporous Mesoporous Mat. 2021, 328, 111491. [Google Scholar] [CrossRef]
- Wei, W.; Li, J.; Han, X.; Yao, Y.; Zhao, W.; Han, R.; Li, S.; Zhang, Y.; Zheng, C. Insights into the adsorption mechanism of tannic acid by a green synthesized nano-hydroxyapatite and its effect on aqueous Cu(II) removal. Sci. Total Environ. 2021, 778, 146189. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Shi, M.; Dong, C.; Liu, L.; Gao, C. Applications of tannic acid in membrane technologies: A review. Adv. Colloid Interface Sci. 2020, 284, 102267. [Google Scholar] [CrossRef]
- Kumar, R.; Barakat, M.A.; Soliman, E.M. Removal of tannic acid from aqueous solution by magnetic carbohydrate natural polymer. J. Ind. Eng. Chem. 2014, 20, 2992–2997. [Google Scholar] [CrossRef]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Aryee, A.A.; Dovi, E.; Li, Q.; Han, R.; Li, Z.; Qu, L. Magnetic biocomposite based on peanut husk for adsorption of hexavalent chromium, Congo red and phosphate from solution: Characterization, kinetics, equilibrium, mechanism and antibacterial studies. Chemosphere 2022, 287, 132030. [Google Scholar] [CrossRef]
- Castaldo, R.; Avolio, R.; Cocca, M.; Errico, M.E.; Avella, M.; Gentile, G. Amino-functionalized hyper-crosslinked resins for enhanced adsorption of carbon dioxide and polar dyes. Chem. Eng. J. 2021, 418, 129463. [Google Scholar] [CrossRef]
- Melnyk, I.V.; Tomina, V.V.; Stolyarchuk, N.V.; Seisenbaeva, G.A.; Kessler, V.G. Organic dyes (acid red, fluorescein, methylene blue) and copper(II) adsorption on amino silica spherical particles with tailored surface hydrophobicity and porosity. J. Mol. Liq. 2021, 336, 116301. [Google Scholar] [CrossRef]
- Tang, Y.; Li, M.; Mu, C.; Zhou, J.; Shi, B. Ultrafast and efficient removal of anionic dyes from wastewater by polyethyleneimine-modified silica nanoparticles. Chemosphere 2019, 229, 570–579. [Google Scholar] [CrossRef]
- Babapour, M.; Dehghani, M.H.; Alimohammadi, M.; Arjmand, M.M.; Salari, M.; Rasuli, L.; Mubarak, N.M.; Khan, N.A. Adsorption of Cr(VI) from aqueous solution using mesoporous metal-organic framework-5 functionalized with the amino acids: Characterization, optimization, linear and nonlinear kinetic models. J. Mol. Liq. 2022, 345, 117835. [Google Scholar] [CrossRef]
- Huang, X.Y.; Mao, X.Y.; Bu, H.T.; Yu, X.Y.; Jiang, G.B.; Zeng, M.H. Chemical modification of chitosan by tetraethylenepentamine and adsorption study for anionic dye removal. Carbohydr. Res. 2011, 346, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- Liou, T.H.; Liou, Y.H. Utilization of rice husk ash in the preparation of graphene-oxide-based mesoporous nanocomposites with excellent adsorption performance. Materials 2021, 14, 1214. [Google Scholar] [CrossRef] [PubMed]
- Liou, T.H.; Hung, L.W.; Liu, C.L.; Zhang, T.Y. Direct synthesis of nano titania on highly-ordered mesoporous SBA-15 framework for enhancing adsorption and photocatalytic activity. J. Porous Mat. 2018, 25, 1337–1347. [Google Scholar] [CrossRef]
- Nnadozie, E.C.; Ajibade, P.A. Adsorption, kinetic and mechanistic studies of Pb(II) and Cr(VI) ions using APTES functionalized magnetic biochar. Microporous Mesoporous Mat. 2020, 309, 110573. [Google Scholar] [CrossRef]
- Zheng, W.T.; Huang, K.; Dai, S. Solvothermal and template-free synthesis of N-Functionalized mesoporous polymer for amine impregnation and CO2 adsorption. Microporous Mesoporous Mat. 2019, 290, 109653. [Google Scholar] [CrossRef]
- Olejnik, A.; Goscianska, J. On the importance of physicochemical parameters of copper and aminosilane functionalized mesoporous silica for hydroxychloroquine release. Mater. Sci. Eng. C 2021, 130, 112438. [Google Scholar] [CrossRef]
- Putz, A.-M.; Ciopec, M.; Negrea, A.; Grad, O.; Ianasi, C.; Ivankov, O.I.; Milanovic, M.; Stijepovic, I.; Almásy, L. Comparison of structure and adsorption properties of mesoporous silica functionalized with aminopropyl groups by the co-condensation and the post grafting methods. Materials 2021, 14, 628. [Google Scholar] [CrossRef]
- Liou, T.H.; Tseng, Y.K.; Liu, S.M.; Lin, Y.T.; Wang, S.Y.; Liu, R.T. Green synthesis of mesoporous graphene oxide/silica nanocomposites from rich husk ash: Characterization and adsorption performance. Environ. Technol. Innov. 2021, 22, 101424. [Google Scholar] [CrossRef]
- Maia, D.O.; Chagas, A.M.S.; Araújo, A.M.M.; Júnior, A.V.M.; Ferreira, I.M.L.; Lemos, F.C.D.; Araujo, A.S.; Júnior, V.J.F.; Gondim, A.D. Catalytic pyrolysis of glycerol in the presence of Nickel (II) Schiff base complex supported in SBA-15: Kinetic and products (TG-FTIR and PY-CG/MS). Thermochim. Acta 2018, 669, 160–168. [Google Scholar]
- García, A.; Rosales, M.; Thomas, M.; Golemme, G. Arsenic photocatalytic oxidation over TiO2-loaded SBA-15. J. Environ. Chem. Eng. 2021, 9, 106443. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, C.; Ding, S.; Ma, H.; Ji, Y. Behaviors and mechanisms of tannic acid adsorption on an amino-functionalized magnetic nanoadsorbent. Desalination 2011, 273, 285–291. [Google Scholar] [CrossRef]
- Anbia, M.; Salehi, S. Removal of acid dyes from aqueous media by adsorption onto amino-functionalized nanoporous silica SBA-3. Dyes Pigment. 2012, 94, 1–9. [Google Scholar] [CrossRef]
- Liou, T.H. A green route to preparation of MCM-41 silicas with well-ordered mesostructure controlled in acidic and alkaline environments. Chem. Eng. J. 2011, 171, 1458–1468. [Google Scholar] [CrossRef]
- Zhang, Y.; Qian, C.; Duan, J.; Liang, Y.; Luo, J.; Han, Y.; Hu, J.; Shi, F. Synthesis of HKUST-1 embedded in SBA-15 functionalized with carboxyl groups as a catalyst for 4-nitrophenol to 4-aminophenol. Appl. Surf. Sci. 2022, 573, 151558. [Google Scholar] [CrossRef]
- Wu, J.; Zhu, X.; Yang, F.; Ge, T.; Wang, R. Easily-synthesized and low-cost amine-functionalized silica sol-coated structured adsorbents for CO2 capture. Chem. Eng. J. 2021, 425, 131409. [Google Scholar] [CrossRef]
- Parlett, C.M.A.; Arandiyan, H.; Durndell, L.J.; Isaacs, M.A.; Lopez, A.T.; Wong, R.J.; Wilson, K.; Lee, A.F. Continuous-flow synthesis of mesoporous SBA-15. Microporous Mesoporous Mat. 2022, 329, 111535. [Google Scholar] [CrossRef]
- Akti, F.; Balci, S. Synthesis of APTES and alcohol modified Sn/SBA-15 in presence of competitive ion: Test in degradation of Remazol Yellow. Mater. Res. Bull. 2022, 145, 111496. [Google Scholar] [CrossRef]
- Patra, T.; Mohanty, A.; Singh, L.; Muduli, S.; Parhi, P.K.; Sahoo, T.R. Effect of calcination temperature on morphology and phase transformation of MnO2 nanoparticles: A step towards green synthesis for reactive dye adsorption. Chemosphere 2022, 288, 132472. [Google Scholar] [CrossRef]
- El-Sewify, I.M.; Radwan, A.; Shahat, A.; El-Shahat, M.F.; Khalil, M.M.H. Superior adsorption and removal of aquaculture and bio-staining dye from industrial wastewater using microporous nanocubic Zn-MOFs. Microporous Mesoporous Mat. 2022, 329, 111506. [Google Scholar] [CrossRef]
- Koyuncu, D.D.E.; Okur, M. Removal of AV 90 dye using ordered mesoporous carbon materials prepared via nanocasting of KIT-6: Adsorption isotherms, kinetics and thermodynamic analysis. Sep. Purif. Technol. 2021, 257, 117657. [Google Scholar] [CrossRef]
- Alorabi, A.Q.; Hassan, M.S.; Alam, M.M.; Zabin, S.A.; Alsenani, N.I.; Baghdadi, N.E. Natural clay as a low-cost adsorbent for crystal violet dye removal and antimicrobial activity. Nanomaterials 2021, 11, 2789. [Google Scholar] [CrossRef]
- Bachmann, S.A.L.; Calvete, T.; Féris, L.A. Caffeine removal from aqueous media by adsorption: An overview of adsorbents evolution and the kinetic, equilibrium and thermodynamic studies. Sci. Total Environ. 2021, 767, 144229. [Google Scholar] [CrossRef]
- Elkartehi, M.E.; Mahmoud, R.; Shehata, N.; Farghali, A.; Gamil, S.; Zaher, A. LDH nanocubes synthesized with zeolite templates and their high performance as adsorbents. Nanomaterials 2021, 11, 3315. [Google Scholar] [CrossRef] [PubMed]
- Sarıcı-Özdemir, Ç.; Önal, Y. Equilibrium, kinetic and thermodynamic adsorptions of the environmental pollutant tannic acid onto activated carbon. Desalination 2010, 251, 146–152. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, W.; Chen, B.; Zhao, Y.; Liu, D.; Sun, Y.; Gong, B. Removal of tetracycline from aqueous solution by MCM-41-zeolite A loaded nano zero valent iron: Synthesis, characteristic, adsorption performance and mechanism. J. Hazard. Mater. 2017, 339, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Liu, L.; He, Q.; Zhang, D.; Jin, J.; Jiang, B.; Zhao, L. Adsorption behaviors and kinetics studies of chitooligosaccharides with specific degree of polymerization on a novel ion-exchange resin. Chem. Eng. J. 2022, 430, 132630. [Google Scholar] [CrossRef]
- An, J.H.; Dultz, S. Adsorption of tannic acid on chitosan-montmorillonite as a function of pH and surface charge properties. Appl. Clay Sci. 2007, 36, 256–264. [Google Scholar] [CrossRef]
- Hsieh, C.T.; Teng, H. Influence of mesopore volume and adsorbate size on adsorption capacities of activated carbons in aqueous solutions. Carbon 2000, 38, 863–869. [Google Scholar] [CrossRef]
- Chang, M.Y.; Juang, R.S. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. J. Colloid Interface Sci. 2004, 278, 18–25. [Google Scholar] [CrossRef]
- Wang, J.; Ji, Y.; Ding, S.; Ma, H.; Han, X. Adsorption and Desorption Behavior of Tannic Acid in Aqueous Solution on Polyaniline Adsorbent. Chin. J. Chem. Eng. 2013, 21, 594–599. [Google Scholar] [CrossRef]
- Agarwal, S.; Rajoria, P.; Rani, A. Adsorption of tannic acid from aqueous solution onto chitosan/NaOH/fly ash composites: Equilibrium, kinetics, thermodynamics and modeling. J. Environ. Chem. Eng. 2018, 6, 1486–1499. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Q.; Zhou, Y.; Gao, J.; Li, C.; Jiang, X. A low-cost crosslinked polystyrene derived from environmental wastes for adsorption of phenolic compounds from aqueous solution. J. Mol. Liq. 2020, 314, 113641. [Google Scholar] [CrossRef]
- Lawal, A.A.; Hassan, M.A.; Zakaria, M.R.; Yusoff, M.Z.M.; Norrrahim, M.N.F.; Mokhtar, M.N.; Shirai, Y. Effect of oil palm biomass cellulosic content on nanopore structure and adsorption capacity of biochar. Bioresour. Technol. 2021, 332, 125070. [Google Scholar] [CrossRef] [PubMed]
Sample | SBET (m2/g) | Vt (cm3/g) | Vmic (cm3/g) | Vmeso (cm3/g) | Vmeso/Vt (%) | dp (nm) |
---|---|---|---|---|---|---|
SBA-15–12 h | 766 | 1.038 | 0.024 | 1.014 | 97.69 | 6.62 |
SBA-15–24 h | 655 | 1.044 | 0.014 | 1.030 | 98.66 | 6.46 |
SBA-15–48 h | 604 | 1.105 | 0.009 | 1.096 | 99.19 | 7.60 |
SBA-15–72 h | 546 | 1.037 | 0.006 | 1.031 | 99.42 | 7.55 |
SBA-15/APTES | 264 | 0.521 | 0.005 | 0.516 | 99.04 | 6.10 |
SBA-15/PEHA | 167 | 0.272 | 0.005 | 0.267 | 98.16 | 4.49 |
Sample | ΔS (J/K × mol) | ΔH (kJ/mol) | ΔG (kJ/mol) | |||
---|---|---|---|---|---|---|
25 °C | 40 °C | 50 °C | 60 °C | |||
SBA-15/APTES | −324.99 | −100.99 | −4.434 | −1.096 | 4.909 | 6.507 |
SBA-15/PEHA | −72.99 | −24.58 | −2.734 | −1.953 | −0.926 | −0.227 |
Sample | Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|---|
RL | qL (mg/g) | KL | R2 | n | KF (mg/g) | R2 | |
SBA-15/APTES | 0.154 | 418.41 | 0.11 | 0.986131 | 1.44 | 47.49 | 0.990632 |
SBA-15/PEHA | 0.333 | 303.03 | 0.04 | 0.984151 | 1.02 | 10.7 | 0.978013 |
Model | Parameter | Value | |
---|---|---|---|
SBA-15/APTES | SBA-15/PEHA | ||
Pseudo-first-order adsorption kinetic | qe,experiment (mg/g) | 215.78 | 205.52 |
qe,calculated (mg/g) | 219.25 | 218.08 | |
k1 (min−1) | 0.6473 | 43.49 | |
R2 | 0.97224 | 0.98146 | |
Pseudo-second-order adsorption kinetic | qe,experiment (mg/g) | 215.78 | 205.52 |
qe,calculated (mg/g) | 218.34 | 206.61 | |
k2 (min−1) | 0.02 | 0.01 | |
R2 | 0.99971 | 0.99978 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liou, T.-H.; Chen, G.-W.; Yang, S. Preparation of Amino-Functionalized Mesoporous SBA-15 Nanoparticles and the Improved Adsorption of Tannic Acid in Wastewater. Nanomaterials 2022, 12, 791. https://doi.org/10.3390/nano12050791
Liou T-H, Chen G-W, Yang S. Preparation of Amino-Functionalized Mesoporous SBA-15 Nanoparticles and the Improved Adsorption of Tannic Acid in Wastewater. Nanomaterials. 2022; 12(5):791. https://doi.org/10.3390/nano12050791
Chicago/Turabian StyleLiou, Tzong-Horng, Guan-Wei Chen, and Shang Yang. 2022. "Preparation of Amino-Functionalized Mesoporous SBA-15 Nanoparticles and the Improved Adsorption of Tannic Acid in Wastewater" Nanomaterials 12, no. 5: 791. https://doi.org/10.3390/nano12050791
APA StyleLiou, T. -H., Chen, G. -W., & Yang, S. (2022). Preparation of Amino-Functionalized Mesoporous SBA-15 Nanoparticles and the Improved Adsorption of Tannic Acid in Wastewater. Nanomaterials, 12(5), 791. https://doi.org/10.3390/nano12050791