Hybrid Hydrogen Sensor Based on Pd/WO3 Showing Simultaneous Chemiresistive and Gasochromic Response
Abstract
:1. Introduction
2. Experimental Details
2.1. Fabrication of Proposed Hydrogen Sensor
2.2. Characterization
2.3. Experimental Setup
2.4. Gasochromic Reactivity Analysis
3. Results
3.1. Working Principles of the Hybrid Hydrogen Sensor
3.2. Exploration of Structure and Operating Conditions
3.3. Evaluation of the Reactivity of the Fabricated Sensor to Hydrogen
4. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Momirlan, M.; Veziroglu, T.N. The Properties of Hydrogen as Fuel Tomorrow in Sustainable Energy System for a Cleaner Planet. Int. J. Hydrogen Energy 2005, 30, 795–802. [Google Scholar] [CrossRef]
- Dunn, S. Hydrogen Futures: Toward a Sustainable Energy System. Int. J. Hydrogen Energy 2002, 27, 235–264. [Google Scholar] [CrossRef]
- Hübert, T.; Boon-Brett, L.; Palmisano, V.; Bader, M.A. Developments in Gas Sensor Technology for Hydrogen Safety. Int. J. Hydrogen Energy 2014, 39, 20474–20483. [Google Scholar] [CrossRef]
- Buttner, W.J.; Post, M.B.; Burgess, R.; Rivkin, C. An Overview of Hydrogen Safety Sensors and Requirements. Int. J. Hydrogen Energy 2011, 36, 2462–2470. [Google Scholar] [CrossRef]
- Møller, K.T.; Jensen, T.R.; Akiba, E.; Li, H. Hydrogen—A Sustainable Energy Carrier. Prog. Nat. Sci. Mater. Int. 2017, 27, 34–40. [Google Scholar] [CrossRef]
- Rivkin, C.; Burgess, R.; Buttner, W. Hydrogen Technologies Safety Guide NREL; National Renewable Energy Laboratory: Golden, CO, USA, 2015. [Google Scholar]
- Luo, Y.; Zhang, C.; Zheng, B.; Geng, X.; Debliquy, M. Hydrogen Sensors Based on Noble Metal Doped Metal-Oxide Semiconductor: A Review. Int. J. Hydrogen Energy 2017, 42, 20386–20397. [Google Scholar] [CrossRef]
- Harley-Trochimczyk, A.; Chang, J.; Zhou, Q.; Dong, J.; Pham, T.; Worsley, M.A.; Maboudian, R.; Zettl, A.; Mickelson, W. Catalytic Hydrogen Sensing Using Microheated Platinum Nanoparticle-Loaded Graphene Aerogel. Sens. Actuators B Chem. 2015, 206, 399–406. [Google Scholar] [CrossRef]
- Sharma, B.; Sharma, A.; Kim, J.-S. Recent Advances on H2 Sensor Technologies Based on MOX and FET Devices: A Review. Sens. Actuators B Chem. 2018, 262, 758–770. [Google Scholar] [CrossRef]
- Gorbova, E.; Balkourani, G.; Molochas, C.; Sidiropoulos, D.; Brouzgou, A.; Demin, A.; Tsiakaras, P. Brief Review on High-Temperature Electrochemical Hydrogen Sensors. Catalysts 2022, 12, 1647. [Google Scholar] [CrossRef]
- Wang, G.; Dai, J.; Yang, M. Fiber-Optic Hydrogen Sensors: A Review. IEEE Sens. J. 2020, 21, 12706–12718. [Google Scholar] [CrossRef]
- Imai, Y.; Tadaki, D.; Ma, T.; Kimura, Y.; Hirano-Iwata, A.; Niwano, M. Response Characteristics of Hydrogen Gas Sensor with Porous Piezoelectric Poly (Vinylidene Fluoride) Film. Sens. Actuators B Chem. 2017, 247, 479–489. [Google Scholar] [CrossRef]
- Pranti, A.S.; Loof, D.; Kunz, S.; Zielasek, V.; Bäumer, M.; Lang, W. Design and Fabrication Challenges of a Highly Sensitive Thermoelectric-Based Hydrogen Gas Sensor. Micromachines 2019, 10, 650. [Google Scholar] [CrossRef] [PubMed]
- Vidiš, M.; Shpetnyi, I.O.; Roch, T.; Satrapinskyy, L.; Patrnčiak, M.; Plecenik, A.; Plecenik, T. Flexible Hydrogen Gas Sensor Based on a Capacitor-like Pt/TiO2/Pt Structure on Polyimide Foil. Int. J. Hydrogen Energy 2021, 46, 19217–19228. [Google Scholar] [CrossRef]
- Çoban, Ö.; Tekmen, S.; Gür, E.; Tüzemen, S. High Optical Response NiO, Pd/NiO and Pd/WO3 Hydrogen Sensors. Int. J. Hydrogen Energy 2022, 47, 25454–25464. [Google Scholar] [CrossRef]
- Ivanov, I.; Baranov, A.; Mironov, S.; Akbari, S. Selective Low-Temperature Hydrogen Catalytic Sensor. IEEE Sens. Lett. 2022, 6, 1–4. [Google Scholar] [CrossRef]
- Kathiravan, D.; Huang, B.-R.; Saravanan, A. Self-Assembled Hierarchical Interfaces of ZnO Nanotubes/Graphene Heterostructures for Efficient Room Temperature Hydrogen Sensors. ACS Appl. Mater. Interfaces 2017, 9, 12064–12072. [Google Scholar] [CrossRef]
- Kim, S.-H.; Yun, K.-S. Room-Temperature Hydrogen Gas Sensor Composed of Palladium Thin Film Deposited on NiCo2O4 Nanoneedle Forest. Sens. Actuators B Chem. 2023, 376, 132958. [Google Scholar] [CrossRef]
- Gao, C.; Guo, X.; Nie, L.; Wu, X.; Peng, L.; Chen, J. A Review on WO3 Gasochromic Film: Mechanism, Preparation and Properties. Int. J. Hydrogen Energy 2023, 48, 2442–2465. [Google Scholar] [CrossRef]
- Liu, H.; Yang, Z.; Wang, L.; Yu, P.; Kang, Z.; Wu, Q.; Kuang, C.; Yu, A. Gasochromic Hydrogen Sensors: Fundamentals, Recent Advances, and Perspectives. Sens. Mater. 2023, 35, 39–73. [Google Scholar] [CrossRef]
- Chan, C.-C.; Hsu, W.-C.; Chang, C.-C.; Hsu, C.-S. Preparation and Characterization of Gasochromic Pt/WO3 Hydrogen Sensor by Using the Taguchi Design Method. Sens. Actuators B Chem. 2010, 145, 691–697. [Google Scholar] [CrossRef]
- Inouye, A.; Yamamoto, S.; Nagata, S.; Yoshikawa, M.; Shikama, T. Hydrogen Behavior in Gasochromic Tungsten Oxide Films Investigated by Elastic Recoil Detection Analysis. Nucl. Instrum. Methods Phys. Res. B 2008, 266, 301–307. [Google Scholar] [CrossRef]
- Karuppasamy, A. Electrochromism in Surface Modified Crystalline WO3 Thin Films Grown by Reactive DC Magnetron Sputtering. Appl. Surf. Sci. 2013, 282, 77–83. [Google Scholar] [CrossRef]
- Girma, H.G.; Lee, H.M.; Kim, Y.; Ryu, G.-S.; Jeon, S.; Kim, J.Y.; Jung, S.-H.; Kim, S.H.; Noh, Y.-Y.; Lim, B. Highly Sensitive and Wrappable Room Temperature Wireless Gasochromic and Chemiresistive Dual-Response H2 Sensors Using Spray Coating. Nano Energy 2023, 113, 108551. [Google Scholar] [CrossRef]
- Girma, H.G.; Ryu, K.Y.; Tang, X.; Ryu, G.-S.; Wang, R.; Kim, Y.; Choi, J.O.; Lee, H.M.; Jeon, S.; Jung, S.-H.; et al. Large-Area Printed Oxide Film Sensors Enabling Ultrasensitive and Dual Electrical/Colorimetric Detection of Hydrogen at Room Temperature. ACS Sens. 2023, 8, 3004–3013. [Google Scholar] [CrossRef]
- Frazier, G.A.; Glosser, R. Characterization of Thin Films of the Palladium-Hydrogen System. J. Less Common Met. 1980, 74, 89–96. [Google Scholar] [CrossRef]
- Lethy, K.J.; Beena, D.; Kumar, R.V.; Pillai, V.P.M.; Ganesan, V.; Sathe, V. Structural, Optical and Morphological Studies on Laser Ablated Nanostructured WO3 Thin Films. Appl. Surf. Sci. 2008, 254, 2369–2376. [Google Scholar] [CrossRef]
- Chen, H.; Xu, N.; Deng, S.; Lu, D.; Li, Z.; Zhou, J.; Chen, J. Gasochromic Effect and Relative Mechanism of WO3 Nanowire Films. Nanotechnology 2007, 18, 205701. [Google Scholar] [CrossRef]
- SweepMe! Available online: https://sweep-me.net/ (accessed on 11 August 2023).
- Kossyvaki, D.; Barbetta, A.; Contardi, M.; Bustreo, M.; Dziza, K.; Lauciello, S.; Athanassiou, A.; Fragouli, D. Highly Porous Curcumin-Loaded Polymer Mats for Rapid Detection of Volatile Amines. ACS Appl. Polym. Mater. 2022, 4, 4464–4475. [Google Scholar] [CrossRef]
- Luo, J. Fundamental Investigation of the Optical Properties of Tungsten Oxide (WO3-x) Nanowire Films; Sun Yat-sen University: Guangzhou, China, 2009. [Google Scholar]
- Georg, A.; Graf, W.; Neumann, R.; Wittwer, V. Mechanism of the Gasochromic Coloration of Porous WO3 Films. Solid State Ion. 2000, 127, 319–328. [Google Scholar] [CrossRef]
Element | wt% | wt% Sigma |
---|---|---|
O | 48.04 | 0.26 |
Pd | 1.43 | 0.16 |
W | 50.54 | 0.27 |
Total: | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Maeng, B.; Yang, Y.; Kim, K.; Jung, D. Hybrid Hydrogen Sensor Based on Pd/WO3 Showing Simultaneous Chemiresistive and Gasochromic Response. Nanomaterials 2023, 13, 2563. https://doi.org/10.3390/nano13182563
Kim S, Maeng B, Yang Y, Kim K, Jung D. Hybrid Hydrogen Sensor Based on Pd/WO3 Showing Simultaneous Chemiresistive and Gasochromic Response. Nanomaterials. 2023; 13(18):2563. https://doi.org/10.3390/nano13182563
Chicago/Turabian StyleKim, Sanghoon, Bohee Maeng, Yijun Yang, Kwanwoo Kim, and Daewoong Jung. 2023. "Hybrid Hydrogen Sensor Based on Pd/WO3 Showing Simultaneous Chemiresistive and Gasochromic Response" Nanomaterials 13, no. 18: 2563. https://doi.org/10.3390/nano13182563
APA StyleKim, S., Maeng, B., Yang, Y., Kim, K., & Jung, D. (2023). Hybrid Hydrogen Sensor Based on Pd/WO3 Showing Simultaneous Chemiresistive and Gasochromic Response. Nanomaterials, 13(18), 2563. https://doi.org/10.3390/nano13182563