Revealing the Adsorption Mechanisms of Methanol on Lithium-Doped Porous Carbon through Experimental and Theoretical Calculations
Abstract
:1. Introduction
2. Experimental Section
2.1. Material Synthesis
2.2. Material Characterization and Computational Methodology
3. Results and Discussion
3.1. Chemical and Structural Properties of Porous Carbon
3.2. Methanol Adsorption
3.3. Methanol Adsorption Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, L.; Shen, D.; Luo, K.H. A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods. J. Hazard. Mater. 2020, 389, 122102. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, R.; Vilya, K.; Pradhan, M.; Nayak, A.K. Recent advancement of biomass-derived porous carbon based materials for energy and environmental remediation applications. J. Mater. Chem. A 2022, 10, 6965–7005. [Google Scholar] [CrossRef]
- Bos, L.D.; Sterk, P.J.; Fowler, S.J. Breathomics in the setting of asthma and chronic obstructive pulmonary disease. J. Allergy Clin. Immun. 2016, 138, 970–976. [Google Scholar] [CrossRef]
- Ibrahim, W.; Carr, L.; Cordell, R.; Wilde, M.J.; Salman, D.; Monks, P.S.; Thomas, P.; Brightling, C.E.; Siddiqui, S.; Greening, N.J. Breathomics for the clinician: The use of volatile organic compounds in respiratory diseases. Thorax 2021, 76, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Kai, Z.; Ying, W.; Xi, H. New functionalized IRMOF-10 with strong affinity for methanol: A simulation study. Appl. Surf. Sci. 2018, 440, 351–358. [Google Scholar] [CrossRef]
- Liu, Z.; Kai, Z.; Ying, W.; Xi, H. Effective enhancement on methanol adsorption in Cu-BTC by combination of lithium-doping and nitrogen-doping functionalization. J. Mater. Sci. 2018, 53, 6080–6093. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Yang, Z.; Wang, P.; Yan, Y.; Ran, J. Adsorption materials for volatile organic compounds (VOCs) and the key factors for VOCs adsorption process: A review. Sep. Purif. Technol. 2020, 235, 116213. [Google Scholar] [CrossRef]
- Jeremias, F.; Frohlich, D.; Janiak, C.; Henninger, S.K. Water and methanol adsorption on MOFs for cycling heat transformation processes. New J. Chem. 2014, 38, 1846–1852. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Wang, Y.; Wang, B. Transformation of waste cornstalk into versatile porous carbon adsorbent for selective CO2 capture and efficient methanol adsorption. J. Environ. Chem. Eng. 2021, 9, 106149. [Google Scholar] [CrossRef]
- Ma, X.; Liu, B.; Che, M.; Wu, Q.; Chen, R.; Su, C.; Xu, X.; Zeng, Z.; Li, L. Biomass-based hierarchical porous carbon with ultrahigh surface area for super-efficient adsorption and separation of acetone and methanol. Sep. Purif. Technol. 2021, 269, 118690. [Google Scholar] [CrossRef]
- Zhang, W.; Li, G.; Yin, H.; Zhao, K.; Zhao, H.; An, T. Adsorption and desorption mechanism of aromatic VOCs onto porous carbon adsorbents for emission control and resource recovery: Recent progress and challenges. Environ. Sci. Nano 2022, 9, 81–104. [Google Scholar] [CrossRef]
- Andrés, M.A.; Fontaine, P.; Goldmann, M.; Serre, C.; Roubeau, O.; Gascón, I. Solvent-exchange process in MOF ultrathin films and its effect on CO2 and methanol adsorption. J. Colloid Interface Sci. 2021, 590, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Ji, Y.; Xue, M.; Fronczek, F.R.; Hurtado, E.J.; Mondal, J.U.; Liang, C.; Dai, S. Metal–organic framework with rationally tuned micropores for selective adsorption of water over methanol. Inorg. Chem. 2008, 47, 5543–5545. [Google Scholar] [CrossRef] [PubMed]
- Gordeeva, L.G.; Aristov, Y.I. Composite sorbent of methanol “LiCl in mesoporous silica gel” for adsorption cooling: Dynamic optimization. Energy 2011, 36, 1273–1279. [Google Scholar] [CrossRef]
- Li, Z.; Rieg, C.; Beurer, A.-K.; Benz, M.; Bender, J.; Schneck, C.; Traa, Y.; Dyballa, M.; Hunger, M. Effect of aluminum and sodium on the sorption of water and methanol in microporous MFI-type zeolites and mesoporous SBA-15 materials. Adsorption 2021, 27, 49–68. [Google Scholar] [CrossRef]
- Ma, X.; Xu, W.; Su, R.; Shao, L.; Zeng, Z.; Li, L.; Wang, H. Insights into CO2 capture in porous carbons from machine learning, experiments and molecular simulation. Sep. Purif. Technol. 2023, 306, 122521. [Google Scholar] [CrossRef]
- Sun, L.; Gong, Y.; Li, D.; Pan, C. Biomass-derived porous carbon materials: Synthesis, designing, and applications for supercapacitors. Green Chem. 2022, 24, 3864–3894. [Google Scholar] [CrossRef]
- Li, D.; Su, R.; Ma, X.; Zeng, Z.; Li, L.; Wang, H. Porous carbon for oxygenated and aromatic VOCs adsorption by molecular simulation and experimental study: Effect pore structure and functional groups. Appl. Surf. Sci. 2022, 605, 154708. [Google Scholar] [CrossRef]
- Fang, M.; Wu, K.; Ma, X.; Yao, X.; Guo, Y.; Yu, L.; Wu, Q.; Zeng, Z.; Li, L. Alkali metals modified porous carbon for enhanced methanol and acetone selective adsorption: A theoretical study. Appl. Surf. Sci. 2022, 602, 154271. [Google Scholar] [CrossRef]
- Shen, Y. Biomass-derived porous carbons for sorption of Volatile organic compounds (VOCs). Fuel 2022, 336, 126801. [Google Scholar] [CrossRef]
- Olsson, E.; Chai, G.; Dove, M.; Cai, Q. Adsorption and migration of alkali metals (Li, Na, and K) on pristine and defective graphene surfaces. Nanoscale 2019, 11, 5274–5284. [Google Scholar] [CrossRef]
- Ma, X.; Li, L.; Chen, R.; Wang, C.; Zhou, K.; Li, H. Doping of alkali metals in carbon frameworks for enhancing CO2 capture: A theoretical study. Fuel 2019, 236, 942–948. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, Y.; Su, R.; Ma, X.; Wu, Q.; Zeng, Z.; Li, L.; Yao, X.; Wang, S. Hierarchical porous carbon with an ultrahigh surface area for high-efficient iodine capture: Insights into adsorption mechanisms through experiments, simulations and modeling. Sep. Purif. Technol. 2022, 303, 122237. [Google Scholar] [CrossRef]
- Wu, L.; Cai, Y.; Wang, S.; Li, Z. Doping of nitrogen into biomass-derived porous carbon with large surface area using N2 non-thermal plasma technique for high-performance supercapacitor. Int. J. Hydrogen Energy 2021, 46, 2432–2444. [Google Scholar] [CrossRef]
- Ren, X.; Li, H.; Chen, J.; Wei, L.; Modak, A.; Yang, H.; Yang, Q. N-doped porous carbons with exceptionally high CO2 selectivity for CO2 capture. Carbon 2017, 114, 473–481. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, T.; Pan, H.; Liu, F.; Cao, J.; Lin, Q. Facile preparation of N-doped porous carbon from chitosan and NaNH2 for CO2 adsorption and conversion. Chem. Eng. J. 2022, 432, 134347. [Google Scholar] [CrossRef]
- Jalilov, A.S.; Li, Y.; Tian, J.; Tour, J.M. Ultra-High Surface Area Activated Porous Asphalt for CO2 Capture through Competitive Adsorption at High Pressures. Adv. Energy Mater. 2017, 7, 1600693. [Google Scholar] [CrossRef]
- Ma, X.; Yang, Y.; Wu, Q.; Liu, B.; Li, D.; Chen, R.; Wang, C.; Li, H.; Zeng, Z.; Li, L. Underlying mechanism of CO2 uptake onto biomass-based porous carbons: Do adsorbents capture CO2 chiefly through narrow micropores? Fuel 2020, 282, 118727. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Chen, B.; Wang, L.; Yang, J.; Wang, B. Nitrogen-doped hierarchically constructed interconnected porous carbon nanofibers derived from polyaniline (PANI) for highly selective CO2 capture and effective methanol adsorption. J. Environ. Chem. Eng. 2022, 10, 108847. [Google Scholar] [CrossRef]
- Xu, F.; Tang, Z.; Huang, S.; Chen, L.; Liang, Y.; Mai, W.; Zhong, H.; Fu, R.; Wu, D. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nat. Commun. 2015, 6, 7221. [Google Scholar] [CrossRef]
- Ren, H.; Ben, T.; Sun, F.; Guo, M.; Jing, X.; Ma, H.; Cai, K.; Qiu, S.; Zhu, G. Synthesis of a porous aromatic framework for adsorbing organic pollutants application. J. Mater. Chem. 2011, 21, 10348–10353. [Google Scholar] [CrossRef]
- Yan, Z.; Ren, H.; Ma, H.; Yuan, R.; Yuan, Y.; Zou, X.; Sun, F.; Zhu, G. Construction and sorption properties of pyrene-based porous aromatic frameworks. Microporous Mesoporous Mater. 2013, 173, 92–98. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, D.; Chen, H.; Qian, Y.; Xi, H.; Xia, Q. Enhancement effect of lithium-doping functionalization on methanol adsorption in copper-based metal-organic framework. Chem. Eng. Sci. 2015, 123, 1–10. [Google Scholar] [CrossRef]
- Zhou, K.; Ma, W.; Zeng, Z.; Ma, X.; Xu, X.; Guo, Y.; Li, H.; Li, L. Experimental and DFT study on the adsorption of VOCs on activated carbon/metal oxides composites. Chem. Eng. J. 2019, 372, 1122–1133. [Google Scholar] [CrossRef]
- Zeng, Y.; Prasetyo, L.; Nguyen, V.T.; Horikawa, T.; Do, D.D.; Nicholson, D. Characterization of oxygen functional groups on carbon surfaces with water and methanol adsorption. Carbon 2015, 81, 447–457. [Google Scholar] [CrossRef]
- Liang, Y.; Wu, D.; Fu, R. Carbon Microfibers with Hierarchical Porous Structure from Electrospun Fiber-Like Natural Biopolymer. Sci. Rep. 2013, 3, 1119. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Sun, F.; Ren, H.; Tian, Y.; Guo, M.; Li, L.; Zhu, G. Targeted synthesis of micro–mesoporous hybrid material derived from octaphenylsilsesquioxane building units. Microporous Mesoporous Mater. 2013, 165, 92–98. [Google Scholar] [CrossRef]
- Wu, D.; Nese, A.; Pietrasik, J.; Liang, Y.; He, H.; Kruk, M.; Huang, L.; Kowalewski, T.; Matyjaszewski, K. Preparation of polymeric nanoscale networks from cylindrical molecular bottlebrushes. ACS Nano 2012, 6, 6208–6214. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Sun, F.; Ren, H.; Jing, X.; Wang, W.; Ma, H.; Zhao, H.; Zhu, G. Targeted synthesis of a porous aromatic framework with a high adsorption capacity for organic molecules. J. Mater. Chem. 2011, 21, 13498–13502. [Google Scholar] [CrossRef]
- Jorge, M.; Schumacher, C.; Seaton, N.A. Simulation study of the effect of the chemical heterogeneity of activated carbon on water adsorption. Langmuir 2002, 18, 9296–9306. [Google Scholar] [CrossRef]
- Ma, X.; Qi, T.; Chen, R.; Su, R.; Zeng, Z.; Li, L.; Wang, S. Experimental and theoretical calculations insight into acetone adsorption by porous carbon at different pressures: Effects of pore structure and oxygen groups. J. Colloid Interface Sci. 2023, 646, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jing, L.; Ming, C.; Zheng, C. Theoretical studies of CO2 adsorption mechanism on linkers of metal–organic frameworks. Fuel 2012, 95, 521–527. [Google Scholar]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef] [PubMed]
- Lim, G.; Lee, K.B.; Ham, H.C. Effect of N-Containing Functional Groups on CO2 Adsorption of Carbonaceous Materials: A Density Functional Theory Approach. J. Phys. Chem. C 2016, 120, 8087–8095. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Ma, X.; Das, S.K.; Ostwal, M.; Gadwal, I.; Yao, K.; Dong, X.; Han, Y.; Pinnau, I. Soluble Polymers with Intrinsic Porosity for Flue Gas Purification and Natural Gas Upgrading. Adv. Mater. 2017, 29, 1605826. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Chang, M.; Zheng, C. Effect of Functionalized Linker on CO2 Binding in Zeolitic Imidazolate Frameworks: Density Functional Theory Study. J. Phys. Chem. C 2012, 116, 16985–16991. [Google Scholar] [CrossRef]
- Gupta, A.; Chempath, S.; Sanborn, M.J.; Clark, L.A.; Snurr, R.Q. Object-oriented programming paradigms for molecular modeling. Mol. Simul. 2003, 29, 29–46. [Google Scholar] [CrossRef]
Atom | ε (K) | σ (Å) | q (e) |
---|---|---|---|
C (acetone) | 40 | 3.82 | 0.424 |
O (acetone) | 79 | 3.05 | −0.424 |
CH3 (acetone) | 98 | 3.75 | 0.000 |
H (methanol) | - | - | 0.435 |
O (methanol) | 93 | 3.02 | −0.700 |
CH3 (methanol) | 98 | 3.75 | 0.265 |
C (surface) | 47.86 | 3.47 | Calc. |
O (surface) | 48.16 | 3.03 | Calc. |
H (surface) | 7.65 | 2.85 | Calc. |
Li (surface) | 12.58 | 2.45 | Calc. |
Sample | SBET/m2 g−1 | Vt/cm3 g−1 | Vmicro/cm3 g−1 | Vmes + Vmar/cm3 g−1 | O/at. % | N/at. % | Li/at. % |
---|---|---|---|---|---|---|---|
PC | 2268 | 1.716 | 0.406 | 1.31 | 9.35 | 1.64 | 0 |
LiPC-1 | 2511 | 1.664 | 0.489 | 1.37 | 13.35 | 1.47 | 8.8 |
LiPC-2 | 2300 | 1.508 | 0.443 | 1.065 | 16.39 | 1.43 | 11.04 |
LiPC-3 | 2678 | 1.688 | 0.535 | 1.153 | 11.67 | 1.42 | 12.99 |
Adsorbents | Qe (mmol g−1) | Temperature (°C) | Pressure or Inlet Concentration | References |
---|---|---|---|---|
AC (YP-50) | 16.6 | 25 | 15 kPa | [30] |
CN950 | 13.2 | 25 | 15 kPa | [29] |
A5 | 3.8 | 25 | 16 kPa | [35] |
HPCMF. | 7.6 | 25 | 15 kPa | [36] |
PAF-12 | 9.0 | 25 | 16 kPa | [37] |
OMP | 13.7 | 25 | 15 kPa | [38] |
PAF-5 | 29.2 | 25 | 16 kPa | [31] |
PAF-20 | 19.0 | 25 | 16 kPa | [32] |
PAF-11 | 20.4 | 25 | 16 kPa | [39] |
AC/ZnO composite | 15.0 | 25 | 200 g m−3 | [34] |
AC/MgO composite | 12.3 | 25 | 200 g m−3 | [34] |
AC/CuO composite | 11.0 | 25 | 200 g m−3 | [34] |
AC/ZrO composite | 13.9 | 25 | 200 g m−3 | [34] |
HKUST-1 | 17.8 | 25 | 17.5 kPa | [8] |
MIL-101Cr | 35.9 | 25 | 13 kPa | [8] |
Cu-BTC | 20.1 | 25 | 12 kPa | [33] |
LiPC-3 | 35.4 | 25 | 15 kPa | Present work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Y.; Fang, M.; Wang, H.; Dai, X.; Su, R.; Ma, X. Revealing the Adsorption Mechanisms of Methanol on Lithium-Doped Porous Carbon through Experimental and Theoretical Calculations. Nanomaterials 2023, 13, 2564. https://doi.org/10.3390/nano13182564
Luo Y, Fang M, Wang H, Dai X, Su R, Ma X. Revealing the Adsorption Mechanisms of Methanol on Lithium-Doped Porous Carbon through Experimental and Theoretical Calculations. Nanomaterials. 2023; 13(18):2564. https://doi.org/10.3390/nano13182564
Chicago/Turabian StyleLuo, Yiting, Muaoer Fang, Hanqing Wang, Xiangrong Dai, Rongkui Su, and Xiancheng Ma. 2023. "Revealing the Adsorption Mechanisms of Methanol on Lithium-Doped Porous Carbon through Experimental and Theoretical Calculations" Nanomaterials 13, no. 18: 2564. https://doi.org/10.3390/nano13182564
APA StyleLuo, Y., Fang, M., Wang, H., Dai, X., Su, R., & Ma, X. (2023). Revealing the Adsorption Mechanisms of Methanol on Lithium-Doped Porous Carbon through Experimental and Theoretical Calculations. Nanomaterials, 13(18), 2564. https://doi.org/10.3390/nano13182564