Effects of RF Magnetron Sputtering Power on the Mechanical Behavior of Zr-Cu-Based Metallic Glass Thin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Specimens
2.2. Methodology
3. Experimental Details
4. Results
4.1. EDS Surface Composition Analysis
4.2. XRD Analysis
4.3. FE-SEM Surface Morphology and Nanostructure Observation
4.4. Thin-Film Mechanical Properties
4.5. Creep Responses
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Hata, S.; Wada, K.; Shimokohbe, A. Thermal, mechanical and electrical properties of Pd-based thin-film metallic glass. Jpn. J. Appl. Phys. 2001, 40, 5382. [Google Scholar] [CrossRef]
- Basu, A.K.; Basu, A.; Bhattacharya, S. Micro/Nano fabricated cantilever based biosensor platform: A review and recent progress. Enzym. Microb. Technol. 2020, 139, 109558. [Google Scholar] [CrossRef] [PubMed]
- Ali, W.R.; Prasad, M. Piezoelectric MEMS based acoustic sensors: A review. Sens. Actuators A Phys. 2020, 301, 111756. [Google Scholar] [CrossRef]
- Nastro, A.; Ferrari, M.; Ferrari, V. Double-actuator position-feedback mechanism for adjustable sensitivity in electrostatic-capacitive MEMS force sensors. Sens. Actuators A Phys. 2020, 312, 112127. [Google Scholar] [CrossRef]
- Ejeian, F.; Azadi, S.; Razmjou, A.; Orooji, Y.; Kottapalli, A.; Warkiani, M.E.; Asadnia, M. Design and applications of MEMS flow sensors: A review. Sens. Actuators A Phys. 2019, 295, 483–502. [Google Scholar] [CrossRef]
- Deng, Y.-L.; Lee, J.-W.; Lou, B.-S.; Duh, J.-G.; Chu, J.P.; Jang, J.S.-C. The fabrication and property evaluation of Zr–Ti–B–Si thin film metallic glass materials. Surf. Coat. Technol. 2014, 259, 115–122. [Google Scholar] [CrossRef]
- Chang, J.-C.; Lee, J.-W.; Lou, B.-S.; Li, C.-L.; Chu, J.P. Effects of tungsten contents on the microstructure, mechanical and anticorrosion properties of Zr–W–Ti thin film metallic glasses. Thin Solid Films 2015, 584, 253–256. [Google Scholar] [CrossRef]
- Takeuchi, A.; Inoue, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 2005, 46, 2817–2829. [Google Scholar] [CrossRef]
- Chen, L.-T.; Lee, J.-W.; Yang, Y.-C.; Lou, B.-S.; Li, C.-L.; Chu, J.P. Microstructure, mechanical and anti-corrosion property evaluation of iron-based thin film metallic glasses. Surf. Coat. Technol. 2014, 260, 46–55. [Google Scholar] [CrossRef]
- Wang, P.-C.; Lee, J.-W.; Yang, Y.-C.; Lou, B.-S. Effects of silicon contents on the characteristics of Zr–Ti–Si–W thin film metallic glasses. Thin Solid Films 2016, 618, 28–35. [Google Scholar] [CrossRef]
- Ke, J.; Huang, C.; Chen, Y.; Tsai, W.; Wei, T.; Huang, J. In vitro biocompatibility response of Ti–Zr–Si thin film metallic glasses. Appl. Surf. Sci. 2014, 322, 41–46. [Google Scholar] [CrossRef]
- Telford, M. The case for bulk metallic glass. Mater. Today 2004, 7, 36–43. [Google Scholar] [CrossRef]
- Inoue, A.; Zhang, T.; Masumoto, T. Zr–Al–Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Mater. Trans. JIM 1990, 31, 177–183. [Google Scholar] [CrossRef]
- Peker, A.; Johnson, W.L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 1993, 63, 2342–2344. [Google Scholar] [CrossRef]
- Wang, G.; Pan, D.; Shi, X.; Huttula, M.; Cao, W.; Huang, Y. Tensile creep characterization and prediction of zr-based metallic glass at high temperatures. Metals 2018, 8, 457. [Google Scholar] [CrossRef]
- Kui, H.W.; Greer, A.L.; Turnbull, D. Formation of bulk metallic glass by fluxing. Appl. Phys. Lett. 1984, 45, 615–616. [Google Scholar] [CrossRef]
- Nishiyama, N.; Inoue, A. Glass-forming ability of bulk Pd40Ni10Cu30P20 alloy. Mater. Trans. JIM 1996, 37, 1531–1539. [Google Scholar] [CrossRef]
- Ponnambalam, V.; Poon, S.J.; Shiflet, G.J. Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J. Mater. Res. 2004, 19, 1320–1323. [Google Scholar] [CrossRef]
- Lu, Z.P.; Liu, C.T.; Thompson, J.R.; Porter, W.D. Structural Amorphous Steels. Phys. Rev. Lett. 2004, 92, 245503. [Google Scholar] [CrossRef]
- Lee, M.C.; Kendall, J.M.; Johnson, W.L. Spheres of the metallic glass Au55Pb22.5Sb22.5 and their surface characteristics. Appl. Phys. Lett. 1982, 40, 382–384. [Google Scholar] [CrossRef]
- Schroers, J.; Lohwongwatana, B.; Johnson, W.L.; Peker, A. Gold based bulk metallic glass. Appl. Phys. Lett. 2005, 87, 061912. [Google Scholar] [CrossRef]
- Ji, X.; Zhao, J.; Zhang, X.; Zhou, M. Erosion–corrosion behavior of Zr-based bulk metallic glass in saline-sand slurry. Tribol. Int. 2013, 60, 19–24. [Google Scholar] [CrossRef]
- Khan, M.M.; Shabib, I.; Haider, W. A combinatorially developed Zr-Ti-Fe-Al metallic glass with outstanding corrosion resistance for implantable medical devices. Scr. Mater. 2019, 162, 223–229. [Google Scholar] [CrossRef]
- Hua, N.; Chen, W.; Wang, W.; Lu, H.; Ye, X.; Li, G.; Lin, C.; Huang, X. Tribological behavior of a Ni-free Zr-based bulk metallic glass with potential for biomedical applications. Mater. Sci. Eng. C 2016, 66, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Jabed, A.; Khan, M.M.; Camiller, J.; Greenlee-Wacker, M.; Haider, W.; Shabib, I. Property optimization of Zr-Ti-X (X = Ag, Al) metallic glass via combinatorial development aimed at prospective biomedical application. Surf. Coatings Technol. 2019, 372, 278–287. [Google Scholar] [CrossRef]
- Li, J.; Shi, L.-L.; Zhu, Z.-D.; He, Q.; Ai, H.-J.; Xu, J. Zr61Ti2Cu25Al12 metallic glass for potential use in dental implants: Biocompatibility assessment by in vitro cellular responses. Mater. Sci. Eng. C 2013, 33, 2113–2121. [Google Scholar] [CrossRef] [PubMed]
- Bouala, G.N.; Etiemble, A.; Der Loughian, C.; Langlois, C.; Pierson, J.-F.; Steyer, P. Silver influence on the antibacterial activity of multi-functional Zr-Cu based thin film metallic glasses. Surf. Coatings Technol. 2018, 343, 108–114. [Google Scholar] [CrossRef]
- Lee, J.; Liou, M.-L.; Duh, J.-G. The development of a Zr-Cu-Al-Ag-N thin film metallic glass coating in pursuit of improved mechanical, corrosion, and antimicrobial property for bio-medical application. Surf. Coatings Technol. 2017, 310, 214–222. [Google Scholar] [CrossRef]
- Chen, H.-W.; Hsu, K.-C.; Chan, Y.-C.; Duh, J.-G.; Lee, J.-W.; Jang, J.S.-C.; Chen, G.-J. Antimicrobial properties of Zr–Cu–Al–Ag thin film metallic glass. Thin Solid Films 2014, 561, 98–101. [Google Scholar] [CrossRef]
- Chuang, C.-Y.; Lee, J.-W.; Li, C.-L.; Chu, J.P. Mechanical properties study of a magnetron-sputtered Zr-based thin film metallic glass. Surf. Coatings Technol. 2013, 215, 312–321. [Google Scholar] [CrossRef]
- Tuck, K.; Jungen, A.; Geisberger, A.; Ellis, M.; Skidmore, G. A study of creep in polysilicon MEMS devices. J. Eng. Mater. Technol. 2005, 127, 90–96. [Google Scholar] [CrossRef]
- Hattori, M.; Katsuragawa, N.; Yamaura, S.-I.; Ozawa, M. Three-way catalytic properties and microstructures of metallic glass driven composite catalysts. Catal. Today 2021, 375, 273–281. [Google Scholar] [CrossRef]
- Barbato, M.; Cester, A.; Meneghesso, G. Viscoelasticity Recovery Mechanism in Radio Frequency Microelectromechanical Switches. IEEE Trans. Electron Devices 2016, 63, 3620–3626. [Google Scholar] [CrossRef]
- Mulloni, V.; Lorenzelli, L.; Margesin, B.; Barbato, M.; Meneghesso, G. Temperature as an accelerating factor for lifetime estimation of RF-MEMS switches. Microelectron. Eng. 2016, 160, 63–67. [Google Scholar] [CrossRef]
- Hsu, H.; Peroulis, D. An experimental investigation on viscoelastic behavior in tunable planar RF-MEMS resonators. In Proceedings of the 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA, 23–28 May 2010; Volume 1. [Google Scholar] [CrossRef]
- Hsu, H.-H.; Koslowski, M.; Peroulis, D. An Experimental and theoretical investigation of creep in ultrafine crystalline nickel RF-MEMS devices. IEEE Trans. Microw. Theory Tech. 2011, 59, 2655–2664. [Google Scholar] [CrossRef]
- Blanquet, E.; Mantoux, A.; Pons, M.; Vahlas, C. Chemical vapour deposition and atomic layer deposition of amorphous and nanocrystalline metallic coatings: Towards deposition of multimetallic films. J. Alloys Compd. 2010, 504, S422–S424. [Google Scholar] [CrossRef]
- Chen, M. A brief overview of bulk metallic glasses. NPG Asia Mater. 2011, 3, 82–90. [Google Scholar] [CrossRef]
- Cheng, Y.; Ma, E. Atomic-level structure and structure–property relationship in metallic glasses. Prog. Mater. Sci. 2011, 56, 379–473. [Google Scholar] [CrossRef]
- Bönninghoff, N.; Diyatmika, W.; Chu, J.P.; Mráz, S.; Schneider, J.M.; Lin, C.-L.; Eriksson, F.; Greczynski, G. ZrCuAlNi thin film metallic glass grown by high power impulse and direct current magnetron sputtering. Surf. Coat. Technol. 2021, 412, 127029. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, C.; Shi, Z.; Zhang, H.; Ma, M. Effect of Fe addition on the glass-forming ability, stability, and mechanical properties of Zr50Cu34-Fe Al8Ag8 metallic glasses. J. Alloys Compd. 2022, 929, 167334. [Google Scholar] [CrossRef]
- Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000, 48, 279–306. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, J.; Shen, P.; Guo, Z.; Liu, H. Effects of fabrication parameters on interface of zirconia and Ti-6Al-4V joints using Zr55Cu30Al10Ni5 amorphous filler. J. Mater. Eng. Perform. 2013, 22, 2602–2609. [Google Scholar] [CrossRef]
- Houska, J.; Zeman, P. Role of Al in Cu-Zr-Al thin film metallic glasses: Molecular dynamics and experimental study. Comput. Mater. Sci. 2023, 222, 112104. [Google Scholar] [CrossRef]
- Kumar, G.; Ohkubo, T.; Mukai, T.; Hono, K. Plasticity and microstructure of Zr–Cu–Al bulk metallic glasses. Scr. Mater. 2007, 57, 173–176. [Google Scholar] [CrossRef]
- Pauly, S.; Liu, G.; Gorantla, S.; Wang, G.; Kühn, U.; Kim, D.; Eckert, J. Criteria for tensile plasticity in Cu–Zr–Al bulk metallic glasses. Acta Mater. 2010, 58, 4883–4890. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, S.; Qiao, J.; Lan, A. Effect of Al on the atomic structure in Zr50Cu40Al10 metallic glass. Comput. Mater. Sci. 2017, 128, 343–347. [Google Scholar] [CrossRef]
- Nath, S.D. Formation, microstructure and mechanical properties of ternary ZrxCu90−xAl10 metallic glasses. J. Non-Cryst. Solids 2015, 409, 95–105. [Google Scholar] [CrossRef]
- Liang, K.; Zhang, X.; Qiao, J.; Pan, S.; Feng, S. Effects of minor addition of Al and Ag elements on the atomic structure and mechanical property of ZrCu-based metallic glasses. J. Non-Cryst. Solids 2020, 550, 120385. [Google Scholar] [CrossRef]
- Xu, S.; Wu, W.; Chang, J.; Sha, S.; Wei, B. Duplex solidification mechanisms of glass forming Zr55Cu30Al10Ni5 alloy during electromagnetic levitation processing. Met. Mater. Trans. A 2022, 53, 762–772. [Google Scholar] [CrossRef]
- Sivaraman, R.; Patra, I.; Najm, Z.M.; Hameed, N.M.; Alawsi, T.; Hashemi, S. The effects of minor element addition on the structural heterogeneity and mechanical properties of ZrCuAl bulk metallic glasses. Adv. Mater. Sci. Eng. 2022, 2022, 6528470. [Google Scholar] [CrossRef]
- Shen, P.; Zheng, X.-H.; Lin, Q.-L.; Zhang, D.; Jiang, Q.-C. Wetting of polycrystalline α-Al2O3 by molten Zr55Cu30Al10Ni5 Metallic glass alloy. Met. Mater. Trans. A 2009, 40, 444–449. [Google Scholar] [CrossRef]
- Xiang, Y.; Chen, X.; Vlassak, J. Plane-strain bulge test for thin films. J. Mater. Res. 2005, 20, 2360–2370. [Google Scholar] [CrossRef]
- Vlassak, J.; Nix, W. A new bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films. J. Mater. Res. 1992, 7, 3242–3249. [Google Scholar] [CrossRef]
- Amer, S.M.; Barkov, R.Y.; Yakovtseva, O.A.; Loginova, I.S.; Pozdniakov, A.V. Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy. Mater. Sci. Technol. 2020, 36, 453–459. [Google Scholar] [CrossRef]
- Qian, Y.; Jiang, M.; Zhang, Z.; Huang, H.; Hong, J.; Yan, J. Microstructures and mechanical properties of Zr-based metallic glass ablated by nanosecond pulsed laser in various gas atmospheres. J. Alloys Compd. 2022, 901, 163717. [Google Scholar] [CrossRef]
- Hojabri, A. Structural and optical characterization of ZrO2 thin films grown on silicon and quartz substrates. J. Theor. Appl. Phys. 2016, 10, 219–224. [Google Scholar] [CrossRef]
- Ahmed, S.; Bakar, S.A. Synthesis of thin film and its application. In Contemporary Nanomaterials in Material Engineering Applications; Mubarak, N.M., Khalid, M., Walvekar, R., Numan, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 267–283. [Google Scholar]
- Orozco-Montes, V.; Caillard, A.; Brault, P.; Chamorro-Coral, W.; Bigarre, J.; Sauldubois, A.; Andreazza, P.; Cuynet, S.; Baranton, S.; Coutanceau, C. Synthesis of platinum nanoparticles by plasma sputtering onto glycerol: Effect of argon pressure on their physicochemical properties. J. Phys. Chem. C 2021, 125, 3169–3179. [Google Scholar] [CrossRef]
- Saifutdinov, A.; Timerkaev, B. Modeling and comparative analysis of atmospheric pressure anodic carbon arc discharge in argon and helium–producing carbon nanostructures. Nanomaterials 2023, 13, 1966. [Google Scholar] [CrossRef]
- Liguori, A.; Gallingani, T.; Padmanaban, D.B.; Laurita, R.; Velusamy, T.; Jain, G.; Macias-Montero, M.; Mariotti, D.; Gherardi, M. Synthesis of copper-based nanostructures in liquid environments by means of a non-equilibrium atmospheric pressure nanopulsed plasma jet. Plasma Chem. Plasma Process. 2018, 38, 1209–1222. [Google Scholar] [CrossRef]
- Inoue, A.; Zhang, T. Impact fracture energy of bulk amorphous Zr55Al10Cu30Ni5 alloy. Mater. Trans. JIM 1996, 37, 1726–1729. [Google Scholar] [CrossRef]
- Mitchell, J.S.; Zorman, C.A.; Kicher, T.; Roy, S.; Mehregany, M. Examination of bulge test for determining residual stress, young’s modulus, and poisson’s ratio of 3C-SiC thin films. J. Aerosp. Eng. 2003, 16, 46–54. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Zhang, Z.F. Strengthening and toughening metallic glasses: The elastic perspectives and opportunities. J. Appl. Phys. 2014, 115, 163505. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- May, D.L.; Gordon, A.P.; Segletes, D.S. The Application of the Norton-Bailey Law for Creep Prediction through Power Law Regression; American Society of Mechanical Engineers: San Antonio, TX, USA, 2013. [Google Scholar] [CrossRef]
- Norton, F.H. The Creep of Steel at High Temperatures; McGraw-Hill book Company, Incorporated: New York, NY, USA, 1929. [Google Scholar]
- Yu, P.; Feng, S.; Xu, G.; Guo, X.; Wang, Y.; Zhao, W.; Qi, L.; Li, G.; Liaw, P.; Liu, R. Room-temperature creep resistance of Co-based metallic glasses. Scr. Mater. 2014, 90–91, 45–48. [Google Scholar] [CrossRef]
- Park, S.W.; Kim, Y.R. Fitting Prony-Series Viscoelastic Models with Power-Law Presmoothing. J. Mater. Civ. Eng. 2001, 13, 26–32. [Google Scholar] [CrossRef]
- Dang, N.M.; Wang, Z.-Y.; Wu, T.-Y.; Nguyen, T.A.K.; Lin, M.-T. Measurement of effects of different substrates on the mechanical properties of submicron titanium nickel shape memory alloy thin film using the bulge test. Micromachines 2021, 12, 85. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.-W.; Lu, C.-H.; Wu, S.-C.; Chen, T.-C.; Vinci, R.P.; Brown, W.L.; Lin, M.-T. Viscoelastic mechanical properties measurement of thin Al and Al–Mg films using bulge testing. Thin Solid Films 2016, 618, 2–7. [Google Scholar] [CrossRef]
- Keryvin, V.; Prasad, K.E.; Gueguen, Y.; Sanglebœuf, J.-C.; Ramamurty, U. Temperature dependence of mechanical properties and pressure sensitivity in metallic glasses below glass transition. Philos. Mag. 2008, 88, 1773–1790. [Google Scholar] [CrossRef]
- Chou, H.; Huang, J.; Chang, L. Mechanical properties of ZrCuTi thin film metallic glass with high content of immiscible tantalum. Surf. Coat. Technol. 2010, 205, 587–590. [Google Scholar] [CrossRef]
- Feng, N.; Chen, C.; Hu, J.; Shao, G.; Yuan, G.; Cao, G. Microstructural and mechanical evolution of amorphous Zr-Si with irradiation induced atomic reconfiguration and free volume variation. Surf. Interfaces 2022, 30, 101890. [Google Scholar] [CrossRef]
- Chen, T.-H.; Tsai, C.-K. The microstructural evolution and mechanical properties of Zr-based metallic glass under different strain rate compressions. Materials 2015, 8, 1831–1840. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Liu, L.; Chan, K. Enhanced plasticity by phase separation in CuZrAl bulk metallic glass with micro-addition of Fe. Scr. Mater. 2009, 60, 822–825. [Google Scholar] [CrossRef]
- Paremmal, P.; Karati, A.; Das, R.; Seshadri, R.; Raghothaman, H.; Loganathan, S.; Rao, M.R.; Murty, B. Effect of RF sputtering parameters on the nanoscratch properties of quinary Ti-Zr-Cu-Ni-Al thin film metallic glass. J. Alloys Compd. 2022, 908, 164615. [Google Scholar] [CrossRef]
- Kusano, E. Revisitation of the structure zone model based on the investigation of the structure and properties of Ti, Zr, and Hf thin films deposited at 70–600 °C using DC magnetron sputtering. J. Vac. Sci. Technol. A 2018, 36, 041506. [Google Scholar] [CrossRef]
- Tsai, P.-H.; Lee, C.-I.; Song, S.-M.; Liao, Y.-C.; Li, T.-H.; Jang, J.S.-C.; Chu, J.P. Improved mechanical properties and corrosion resistance of Mg-based bulk metallic glass composite by coating with Zr-based metallic glass thin film. Coatings 2020, 10, 1212. [Google Scholar] [CrossRef]
- Kowong, R.; Denchitcharoen, S.; Lertvanithphol, T.; Triamnak, N.; Chananonnawathorn, C.; Lohwongwatana, B.; Chaiprapa, J.; Songsiriritthigul, C.; Treetong, A.; Klamchuen, A.; et al. Structural and mechanical behavior of Zr-W-Ti thin film metallic glasses prepared by multitarget co-magnetron sputtering. J. Alloys Compd. 2023, 936, 168330. [Google Scholar] [CrossRef]
- Wang, J.-S. Analysis of Residual Stress Distribution in Ito Thin Film Coated on Si-Substrate by Applying Dic Technique and Taguchi Method. Master’s Thesis, National Sun Yat-sen University, Taiwan, China, 2016. [Google Scholar]
- Park, E.; Chang, H.; Kim, D. Effect of addition of Be on glass-forming ability, plasticity and structural change in Cu–Zr bulk metallic glasses. Acta Mater. 2008, 56, 3120–3131. [Google Scholar] [CrossRef]
- Zhao, J.; Gong, J.; Saboo, A.; Dunand, D.C.; Olson, G.B. Dislocation-based modeling of long-term creep behaviors of Grade 91 steels. Acta Mater. 2018, 149, 19–28. [Google Scholar] [CrossRef]
- Lin, T.-T.; Tsai, A.-T.; Lin, M.-T. Time and temperature dependent mechanical behavior of Al/Ti thin films application for MEMS. In Proceedings of the 2017 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Bordeaux, France, 29 May 2017–1 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Yang, B.; Xuan, F.-Z. Creep behavior of subzones in a CrMoV weldment characterized by the in-situ creep test with miniature specimens. Mater. Sci. Eng. A 2018, 723, 148–156. [Google Scholar] [CrossRef]
- Cao, P.; Short, M.P.; Yip, S. Understanding the mechanisms of amorphous creep through molecular simulation. Proc. Natl. Acad. Sci. USA 2017, 114, 13631–13636. [Google Scholar] [CrossRef]
- Liu, S.; Chang, Z.; Fu, Y.; Liu, Y.; Lin, M.; Ren, X.; Wang, W.; Zhang, Z.; He, J. Nanoscale creep behavior and its size dependency of a Zr-based bulk metallic glass manufactured by selective laser melting. Mater. Des. 2022, 218, 110723. [Google Scholar] [CrossRef]
- Wang, C.; Cao, Q.; Wang, X.; Zhang, D.; Qu, S.; Jiang, J. Time-dependent shear transformation zone in thin film metallic glasses revealed by nanoindentation creep. J. Alloys Compd. 2017, 696, 239–245. [Google Scholar] [CrossRef]
- Sattar, M.; Othman, A.R.; Akhtar, M.; Kamaruddin, S.; Khan, R.; Masood, F.; Alam, M.A.; Azeem, M.; Mohsin, S. Curve Fitting for Damage Evolution through Regression Analysis for the Kachanov–Rabotnov Model to the Norton–Bailey Creep Law of SS-316 Material. Materials 2021, 14, 5518. [Google Scholar] [CrossRef]
Sample 1 (75 W) | Sample 2 (100 W) | Sample 3 (125 W) | |
---|---|---|---|
Ambient pressure (Torr) | 5 × 10−6 | 5 × 10−6 | 5 × 10−6 |
Argon flow (sccm) | 22 | 22 | 22 |
Working pressure (Pa) | 1 | 1 | 1 |
The target-to-substrate distance (cm) | 15 | 15 | 15 |
RF power supply (W) | 75 | 100 | 125 |
Sputtering rate (nm/min) | 10.63 | 17.91 | 25.45 |
Duty cycle time (min) | 9.4on/5off | 5.6on/5off | 3.93on/5off |
Parity | 5 | 5 | 5 |
Element | Target | Sample 1 (75 W) | Sample 2 (100 W) | Sample 3 (125 W) |
---|---|---|---|---|
Zr (%) | 55 | 53.98 ± 3.58 | 54.64 ± 3.42 | 55.81 ± 3.32 |
Cu (%) | 30 | 32.1 ± 3.21 | 31.34 + 3.15 | 30.33 ± 3.45 |
Al (%) | 10 | 9.47 ± 1.43 | 9.31 ± 1.69 | 9.24 ± 1.64 |
Ni (%) | 5 | 4.45 ± 1.04 | 4.71 ± 0.28 | 4.62 ± 0.26 |
Sample 1 (75 W) | Sample 2 (100 W) | Sample 3 (125 W) | |
---|---|---|---|
Bulge Young’s modulus (GPa) | 84.25 ± 3.58 | 80.81 ± 3.88 | 78.65 ± 3.65 |
Nanoindentation Young’s modulus (GPa) | 87.63 ± 3.72 | 83.16 + 3.99 | 80.43 ± 3.74 |
Bulge Residual stress (MPa) | 33.65 ± 1.43 | 35.18 ± 1.69 | 13.73 ± 0.64 |
Nanoindentation Hardness (GPa) | 6.29 ± 0.27 | 5.84 ± 0.28 | 5.62 ± 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.A.K.; Dang, N.M.; Lin, C.-H.; Lee, M.-C.; Wang, Z.-Y.; Tsai, Y.-C.; Lin, M.-T. Effects of RF Magnetron Sputtering Power on the Mechanical Behavior of Zr-Cu-Based Metallic Glass Thin Films. Nanomaterials 2023, 13, 2677. https://doi.org/10.3390/nano13192677
Nguyen TAK, Dang NM, Lin C-H, Lee M-C, Wang Z-Y, Tsai Y-C, Lin M-T. Effects of RF Magnetron Sputtering Power on the Mechanical Behavior of Zr-Cu-Based Metallic Glass Thin Films. Nanomaterials. 2023; 13(19):2677. https://doi.org/10.3390/nano13192677
Chicago/Turabian StyleNguyen, Tra Anh Khoa, Nhat Minh Dang, Chi-Hang Lin, Meng-Chieh Lee, Zhao-Ying Wang, Yao-Chuan Tsai, and Ming-Tzer Lin. 2023. "Effects of RF Magnetron Sputtering Power on the Mechanical Behavior of Zr-Cu-Based Metallic Glass Thin Films" Nanomaterials 13, no. 19: 2677. https://doi.org/10.3390/nano13192677
APA StyleNguyen, T. A. K., Dang, N. M., Lin, C. -H., Lee, M. -C., Wang, Z. -Y., Tsai, Y. -C., & Lin, M. -T. (2023). Effects of RF Magnetron Sputtering Power on the Mechanical Behavior of Zr-Cu-Based Metallic Glass Thin Films. Nanomaterials, 13(19), 2677. https://doi.org/10.3390/nano13192677