Facile and Low-Cost Fabrication of SiO2-Covered Au Nanoislands for Combined Plasmonic Enhanced Fluorescence Microscopy and SERS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate Fabrication
2.2. Substrates Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mangalaraja, R.V.; Udayabhaskar, R.; Sathishkumar, P.; Dutta, J. Nanostructured Materials for Sustainable Energy and Environmental Remediation; IOP Publishing: Bristol, UK, 2022; pp. 2053–2563. ISBN 978-0-7503-5143-0. [Google Scholar] [CrossRef]
- Zhang, L.; Gu, F.X.; Chan, J.M.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther. 2008, 83, 761–769. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, B.; Chen, L. SERS Tags: Novel Optical Nanoprobes for Bioanalysis. Chem. Rev. 2013, 113, 1391–1428. [Google Scholar] [CrossRef]
- Cao, Q.; Feng, J.; Lu, H.; Zhang, H.; Zhang, F.; Zeng, H. Surface-enhanced Raman scattering using nanoporous gold on suspended silicon nitride waveguides. Opt. Express. 2018, 26, 24614–24620. [Google Scholar] [CrossRef] [PubMed]
- Jahangirian, H.; Lemraski, E.G.; Webster, T.J.; Rafiee-Moghaddam, R.; Abdollahi, Y. A review of drug delivery systems based on nanotechnology and green chemistry: Green nanomedicine. Int. J. Nanomed. 2017, 12, 2957–2978. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Ong, B.S. Facile Synthesis of Silver Nanoparticles Useful for Fabrication of High-Conductivity Elements for Printed Electronics. J. Am. Chem. Soc. 2005, 127, 3266–3267. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Hyun, H.; Cross, C.J.; Henary, M.; Nasr, K.A.; Oketokoun, R.; Choi, H.S.; Frangioni, J.V. Rapid and Facile Microwave-Assisted Surface Chemistry for Functionalized Microarray Slides. Adv. Funct. Mater. 2012, 22, 872–878. [Google Scholar] [CrossRef] [PubMed]
- González, C.M.O.; Kharissova, O.V.; González, L.T.; Méndez-Rojas, M.A.; Quezada, T.S.; Méndez, Y.P. Scalable Synthesis of Nanomaterials. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Prevo, B.G.; Esakoff, S.A.; Mikhailovsky, A.; Zasadzinski, J.A. Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation. Small 2008, 4, 1183–1195. [Google Scholar] [CrossRef]
- Nagababu, J.V.U.; Shanmukha, K.; Mohammed, R.S.; Mohammed, A.F. Sharaf, Facile synthesis, physio-chemical characterization and bio evaluation of sulfadimidine capped cobalt nanoparticles. Saudi J. Biol. Sci. 2021, 28, 2168–2174. [Google Scholar] [CrossRef]
- Kim, H.; Kang, T.; Lee, H.; Ryoo, H.; Yoo, S.M.; Lee, S.Y.; Kim, B. Facile fabrication of multi-targeted and stable biochemical SERS sensors. Chem. Asian J. 2013, 8, 3010–3014. [Google Scholar] [CrossRef]
- Jiwoong, S.; Gyeong-Hwan, K.; Yeonhee, L.; Chungyeon, L.; Seungsang, C.; Jwa-Min, N. Toward Quantitative Surface-Enhanced Raman Scattering with Plasmonic Nanoparticles: Multiscale View on Heterogeneities in Particle Morphology, Surface Modification, Interface, and Analytical Protocols. J. Am. Chem. Soc. 2022, 144, 22337–22351. [Google Scholar] [CrossRef]
- Liu, G.Q.; Liu, Z.Q.; Chen, Y.H.; Huang, K.; Li, L.; Tang, F.L.; Gong, X.; Hu, Y.; Zhang, X.N. Surface-enhanced Raman scattering effect of gold nanoparticle arrays: The influence of annealing temperature, excitation power and array thickness. Optik 2013, 124, 5124–5126. [Google Scholar] [CrossRef]
- Haynes, C.L.; McFarland, A.D.; Van Duyne, R.P. Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2005, 77, 338–346. [Google Scholar] [CrossRef]
- Sugawa, K.; Tamura, T.; Tahara, H.; Yamaguchi, D.; Akiyama, T.; Otsuki, J.; Kusaka, Y.; Fukuda, N.; Ushijima, H.; Otsuki, J.; et al. Metal-enhanced fluorescence platforms based on plasmonic ordered copper arrays: Wavelength dependence of quenching and enhancement effects. ACS Nano. 2013, 7, 9997–10010. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Park, Y.; Kang, T.; Lee, L.P. Selective and Sensitive Detection of Metal Ions by Plasmonic Resonance Energy Transfer Based Nanospectroscopy. Nat. Nanotechnol. 2009, 4, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef]
- Akimov, Y.A.; Koh, W.S.; Ostrikov, K. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes. Opt. Exp. 2009, 17, 10195–10205. [Google Scholar] [CrossRef]
- Jung, H.; Park, M.; Kang, M. Silver nanoislands on cellulose fibers for chromatographic separation and ultrasensitive detection of small molecules. Light Sci. Appl. 2016, 5, e16009. [Google Scholar] [CrossRef]
- Campos, A.R.; Gao, Z.; Blaber, M.G.; Huang, R.; Schatz, G.C.; Van Duyne, R.P.; Haynes, C.L. Surface-Enhanced Raman Spectroscopy Detection of Ricin B Chain in Human Blood. J. Phys. Chem. C 2016, 120, 20961–20969. [Google Scholar] [CrossRef]
- Sudheer, K.; Mondal, P.; Rai, V.N.; Srivastava, A.K. A study of growth and thermal dewetting behavior of ultra-thin Au films using transmission electron microscope. AIP Adv. 2017, 7, 075303. [Google Scholar] [CrossRef]
- Park, M.; Hwang, C.S.H.; Jeong, K.H. Nanoplasmonic Alloy of Au/Ag Nanocomposites on Paper Substrate for Biosensing Applications. ACS Appl. Mater. Interfaces 2018, 10, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Chung, T.; Lee, Y.; Ahn, M.S.; Lee, W.; Bae, S.I.; Hwang, C.S.H.; Jeong, K.H. Nanoislands as plasmonic materials. Nanoscale 2019, 11, 8651–8664. [Google Scholar] [CrossRef] [PubMed]
- Hwang, C.S.H.; Ahn, M.S.; Lee, Y.; Chung, T.; Jeong, K.H. Ag/Au Alloyed Nanoislands for Wafer-Level Plasmonic Color Filter Arrays. Sci. Rep. 2019, 9, 9082. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Ahn, M.S.; Lee, Y.; Jeong, K.H. Bioplasmonic Alloyed Nanoislands Using Dewetting of Bilayer Thin Films. ACS Appl. Mater. Interfaces 2017, 9, 37154–37159. [Google Scholar] [CrossRef]
- Zamora-Perez, P.; Xiao, C.; Sanles-Sobrido, M.; Rovira-Esteva, M.; Javier Conesa, J.; Mulens-Arias, V.; Jaque, D.; Rivera-Gil, P. Multiphoton imaging of melanoma 3D models with plasmonic nanocapsules. Acta Biomater. 2022, 142, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Li, J.F.; Huang, Y.F.; Ding, Y.; Yang, Z.L.; Li, S.B.; Zhou, X.S.; Fan, F.R.; Zhang, W.; Zhou, Z.Y.; Wu, D.Y.; et al. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Nature 2010, 464, 392–395. [Google Scholar] [CrossRef]
- Andi Haryanto, A.; Lee, C.W. Shell isolated nanoparticle enhanced Raman spectroscopy for mechanistic investigation of electrochemical reactions. Nano Converg. 2022, 9, 9. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Molecular Probes 2004, PS-SpeckTM Microscope Point Source Kit (P7220). Available online: https://assets.fishersci.com/TFS-Assets/LSG/manuals/mp07220.pdf (accessed on 1 October 2023).
- Liu, Y.; Zhang, Y.; Tardivel, M.; Lequeux, M.; Chen, X.; Liu, W.; Huang, J.; Tian, H.; Liu, Q.; Huang, G.; et al. Evaluation of the Reliability of Six Commercial SERS Substrates. Plasmonics 2020, 15, 743–752. [Google Scholar] [CrossRef]
- Bhaskar, S.; Kowshik, N.C.S.S.; Chandran, S.P.; Ramamurthy, S.S. Femtomolar Detection of Spermidine Using Au Decorated SiO2 Nanohybrid on Plasmon-Coupled Extended Cavity Nanointerface: A Smartphone-Based Fluorescence Dequenching Approach. Langmuir 2020, 36, 2865–2876. [Google Scholar] [CrossRef]
- Walters, C.M.; Pao, C.; Gagnon, B.P.; Zamecnik, C.R.; Walker, G.C. Bright Surface-Enhanced Raman Scattering with Fluorescence Quenching from Silica Encapsulated J-Aggregate Coated Gold Nanoparticles. Adv. Mater. 2018, 30, 1705381. [Google Scholar] [CrossRef]
- Rai, A.; Bhaskar, S.; Mohan Ganesh, K.; Ramamurthy, S.S. Hottest Hotspots from the Coldest Cold: Welcome to Nano 4.0. ACS Appl. Nano Mater. 2022, 5, 12245–12264. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidal, A.; Molina-Prados, S.; Cros, A.; Garro, N.; Pérez-Martínez, M.; Álvaro, R.; Mata, G.; Megías, D.; Postigo, P.A. Facile and Low-Cost Fabrication of SiO2-Covered Au Nanoislands for Combined Plasmonic Enhanced Fluorescence Microscopy and SERS. Nanomaterials 2023, 13, 2729. https://doi.org/10.3390/nano13192729
Vidal A, Molina-Prados S, Cros A, Garro N, Pérez-Martínez M, Álvaro R, Mata G, Megías D, Postigo PA. Facile and Low-Cost Fabrication of SiO2-Covered Au Nanoislands for Combined Plasmonic Enhanced Fluorescence Microscopy and SERS. Nanomaterials. 2023; 13(19):2729. https://doi.org/10.3390/nano13192729
Chicago/Turabian StyleVidal, Alejandro, Sergio Molina-Prados, Ana Cros, Núria Garro, Manuel Pérez-Martínez, Raquel Álvaro, Gadea Mata, Diego Megías, and Pablo A. Postigo. 2023. "Facile and Low-Cost Fabrication of SiO2-Covered Au Nanoislands for Combined Plasmonic Enhanced Fluorescence Microscopy and SERS" Nanomaterials 13, no. 19: 2729. https://doi.org/10.3390/nano13192729
APA StyleVidal, A., Molina-Prados, S., Cros, A., Garro, N., Pérez-Martínez, M., Álvaro, R., Mata, G., Megías, D., & Postigo, P. A. (2023). Facile and Low-Cost Fabrication of SiO2-Covered Au Nanoislands for Combined Plasmonic Enhanced Fluorescence Microscopy and SERS. Nanomaterials, 13(19), 2729. https://doi.org/10.3390/nano13192729