Realizing the Ultralow Lattice Thermal Conductivity of Cu3SbSe4 Compound via Sulfur Alloying Effect
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Synthesis
2.2. Characterization
2.3. Thermoelectric Property Measurements
3. Results and discussion
3.1. Crystal Structure
3.2. Microstructure
3.3. Charge Transport Properties
3.4. Thermal Transport Properties
3.5. Figure of Merit (ZT)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bell, L.E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2011, 473, 66–69. [Google Scholar]
- Shi, X.L.; Zou, J.; Chen, Z.-G. Advanced thermoelectric design: From materials and structures to devices. Chem. Rev. 2020, 120, 7399–7515. [Google Scholar]
- DiSalvo, F.J. Termoelectric cooling and power generation. Science 1999, 285, 703–706. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.L.; Gibbs, Z.M.; Agapito, L.A.; Li, G.D.; Kim, H.S.; Nardelli, M.B.; Curtarolo, S.; Snyder, G.J. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat. Mater. 2015, 14, 1223–1228. [Google Scholar] [PubMed]
- Fu, C.G.; Bai, S.Q.; Liu, Y.T.; Tang, Y.S.; Chen, L.D.; Zhao, X.B.; Zhu, T.J. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nat. Commun. 2015, 6, 8144. [Google Scholar] [PubMed]
- Song, J.; Song, H.Y.; Wang, Z.; Lee, S.; Hwang, J.Y.; Lee, S.Y.; Lee, J.; Kim, D.; Lee, K.H.; Kim, Y.; et al. Creation of two-dimensional layered Zintl phase by dimensional manipulation of crystal structure. Sci. Adv. 2019, 5, eaax0390. [Google Scholar]
- Zhou, C.J.; Lee, Y.K.; Yu, Y.; Byun, S.J.; Luo, Z.Z.; Lee, H.; Ge, B.Z.; Lee, Y.L.; Chen, X.Q.; Lee, J.Y.; et al. Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal. Nat. Mater. 2021, 20, 1378–1384. [Google Scholar]
- Zhang, L.; Hong, X.; Chen, Z.Q.; Xiong, D.K.; Bai, J.M. Effects of In2O3 nanoparticles addition on microstructures and thermoelectric properties of Ca3Co4O9 compounds. Ceram. Int. 2020, 46, 17763–17766. [Google Scholar] [CrossRef]
- Dong, S.-T.; Yu, M.-C.; Fu, Z.; Lv, Y.-Y.; Yao, S.-H.; Chen, Y.B. High thermoelectric performance of NaF-doped Bi2Ca2Co2Oy ceramic samples. J. Mater. Res. Technol. 2022, 17, 1598–1604. [Google Scholar] [CrossRef]
- Jiang, B.B.; Yu, Y.; Cui, J.; Liu, X.X.; Xie, L.; Liao, J.C.; Zhang, Q.H.; Huang, Y.; Ning, S.C.; Jia, B.H.; et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 2021, 371, 830–834. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Tritt, T.M. Advances in thermoelectric materials research: Looking back and moving forward. Science 2017, 357, 1369. [Google Scholar]
- Yang, X.; Wang, C.Y.; Lu, R.; Shen, Y.N.; Zhao, H.B.; Li, J.; Li, R.Y.; Zhang, L.X.; Chen, H.S.; Zhang, T.; et al. Progress in measurement of thermoelectric properties of micro/nano thermoelectric materials: A critical review. Nano Energy 2022, 101, 107553. [Google Scholar]
- Lan, R.; Otoo, S.L.; Yuan, P.Y.; Wang, P.F.; Yuan, Y.Y.; Jiang, X.B. Thermoelectric properties of Sn doped GeTe thin films. Appl. Surf. Sci. 2020, 507, 145025. [Google Scholar]
- Pei, Y.Z.; Shi, X.Y.; LaLonde, A.; Wang, H.; Chen, L.D.; Snyder, G.J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66–69. [Google Scholar] [PubMed]
- Zhang, Q.; Song, Q.C.; Wang, X.Y.; Sun, J.Y.; Zhu, Q.; Dahal, K.; Lin, X.; Cao, F.; Zhou, J.W.; Chen, S.; et al. Deep defect level engineering: A strategy of optimizing the carrier concentration for high thermoelectric performance. Energy Environ. Sci. 2018, 11, 933–940. [Google Scholar] [CrossRef]
- Cheng, C.; Zhao, L.D. Anharmoncity and low thermal conductivity in thermoelectrics. Mater. Today Phys. 2018, 4, 50–57. [Google Scholar]
- Zhao, H.B.; Yang, X.; Wang, C.Y.; Lu, R.; Zhang, T.; Chen, H.S.; Zheng, X.H. Progress in thermal rectification due to heat conduction in micro/nano solids. Mater. Today Phys. 2023, 30, 100941. [Google Scholar]
- Biswas, K.; He, J.Q.; Blum, I.D.; Wu, C.I.; Hogan, T.P.; Seidman, D.N.; Dravid, V.P.; Kanatzidis, M.G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414–418. [Google Scholar] [CrossRef]
- Kim, S.; Lee, K.H.; Mun, H.A.; Kim, H.S.; Hwang, S.W.; Roh, J.W.; Yang, D.J.; Shin, W.H.; Li, X.S.; Lee, Y.H.; et al. Dense dislocation arrays embedded in grain boundaries for high-performance bulk thermoelectrics. Science 2015, 348, 109–114. [Google Scholar] [CrossRef]
- Tan, G.J.; Zhao, L.D.; Kanatzidis, M.G. Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 2016, 116, 12123–12149. [Google Scholar]
- Liu, H.L.; Shi, X.; Xu, F.F.; Zhang, L.L.; Zhang, W.Q.; Chen, L.D.; Li, Q.; Uher, C.; Day, T.; Snyder, G.J. Copper ion liquid-like thermoelectrics. Nat. Mater. 2012, 11, 422–425. [Google Scholar] [CrossRef]
- Qiu, P.F.; Shi, X.; Chen, L.D. Cu-based thermoelectric materials. Energy Storage Mater. 2016, 3, 85–97. [Google Scholar]
- Bo, L.; Li, F.J.; Hou, Y.B.; Zuo, M.; Zhao, D.G. Enhanced thermoelectric performance of Cu2Se via nanostructure and compositional gradient. Nanomaterials 2022, 12, 640. [Google Scholar] [CrossRef] [PubMed]
- Ge, B.Z.; Lee, H.; Zhou, C.J.; Lu, W.Q.; Hu, J.B.; Yang, J.; Cho, S.-P.; Qiao, G.; Shi, Z.; Chung, I. Exceptionally low thermal conductivity realized in the chalcopyrite CuFeS2 via atomic-level lattice engineering. Nano Energy 2022, 94, 106941. [Google Scholar]
- Kumar, V.P.; Paradis-Fortin, L.; Lemoine, P.; Caër, G.L.; Malaman, B.; Boullay, P.; Raveau, B.; Guélou, G.; Guilmeau, E. Crossover from germanite to renierite-type structures in Cu22–xZnxFe8Ge4S32 thermoelectric sulfides. ACS Appl. Energy Mater. 2019, 2, 7679–7689. [Google Scholar] [CrossRef]
- Hagiwara, T.; Suekuni, K.; Lemoine, P.; Supka, A.R.; Chetty, R.; Guilmeau, E.; Raveau, B.; Fornari, M.; Ohta, M.; Orabi, R.R.; et al. Key role of d0 and d10 cations for the design of semiconducting colusites: Large thermoelectric ZT in Cu26Ti2Sb6S32 compounds. Chem. Mater. 2021, 33, 3449–3456. [Google Scholar] [CrossRef]
- Guélou, G.; Lemoine, P.; Raveau, B.; Guilmeau, E. Recent developments in high-performance thermoelectric sulphides: An overview of the promising synthetic colusites. J. Mater. Chem. 2021, 9, 773–795. [Google Scholar]
- Yang, C.Y.; Huang, F.Q.; Wu, L.M.; Xu, K. New stannite-like p-type thermoelectric material Cu3SbSe4. J. Phys. D Appl. Phys. 2011, 44, 295404. [Google Scholar] [CrossRef]
- Do, D.T.; Mahanti, S.D. Theoretical study of defects Cu3SbSe4: Search for optimum dopants for enhancing thermoelectric properties. J. Alloys Compd. 2015, 625, 346–354. [Google Scholar] [CrossRef]
- Huang, Y.L.; Zhang, B.; Li, J.W.; Zhou, Z.Z.; Zheng, S.K.; Li, N.H.; Wang, G.W.; Zhang, D.; Zhang, D.L.; Han, G.; et al. Unconventional doping effect leads to ultrahigh average thermoelectric power factor in Cu3SbSe4-Based composites. Adv. Mater. 2022, 34, 2109952. [Google Scholar] [CrossRef] [PubMed]
- García, G.; Palacios, P.; Cabot, A.; Wahnón, P. Thermoelectric properties of doped-Cu3SbSe4 compounds: A first-principles insight. Inorg. Chem. 2018, 57, 7321–7333. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, J.Y.; Jiang, Q.H.; Fu, L.W.; Xiao, Y.; Luo, Y.B.; Zhou, Z.W. Improvement of thermoelectric properties of Cu3SbSe4 compound by in doping. Mater. Des. 2016, 98, 150–154. [Google Scholar] [CrossRef]
- Zhao, D.G.; Wu, D.; Bo, L. Enhanced thermoelectric properties of Cu3SbSe4 compounds via Gallium doping. Energies 2017, 10, 1524. [Google Scholar] [CrossRef]
- Chang, C.H.; Chen, C.L.; Chiu, W.T.; Chen, Y.Y. Enhanced thermoelectric properties of Cu3SbSe4 by germanium doping. Mater. Lett. 2017, 186, 227–230. [Google Scholar] [CrossRef]
- Wei, T.R.; Wang, W.H.; Gibbs, Z.M.; Wu, C.F.; Snyder, G.J.; Li, J.-F. Thermoelectric properties of Sn-doped p-type Cu3SbSe4: A compound with large effective mass and small band gap. J. Mater. Chem. A 2014, 2, 13527–13533. [Google Scholar] [CrossRef]
- Kumar, A.; Dhama, P.; Banerji, P. Enhanced thermoelectric properties in Bi and Te doped p-type Cu3SbSe4 compound. In Proceedings of the DAE Solid State Physics Symposium 2017, Mumbai, India, 26–30 December 2017; Volume 1942, p. 140080. [Google Scholar]
- Zhang, D.; Yang, J.Y.; Bai, H.C.; Luo, Y.B.; Wang, B.; Hou, S.H.; Li, Z.L.; Wang, S.F. Significant average ZT enhancement in Cu3SbSe4-based thermoelectric material via softening p-d hybridization. J. Mater. Chem. A 2019, 7, 17655–17656. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, J.Y.; Jiang, Q.H.; Zhou, Z.W.; Li, X.; Ren, Y.Y.; Xin, J.W.; Basit, A.; He, X.; Chu, W.J.; et al. Simultaneous optimization of the overall thermoelectric properties of Cu3SbSe4 by band engineering and phonon blocking. J. Alloys Compd. 2017, 724, 597–602. [Google Scholar] [CrossRef]
- Wang, B.Y.; Zheng, S.Q.; Wang, Q.; Li, Z.L.; Li, J.; Zhang, Z.P.; Wu, Y.; Zhu, B.S.; Wang, S.Y.; Chen, Y.X.; et al. Synergistic modulation of power factor and thermal conductivity in Cu3SbSe4 towards high thermoelectric performance. Nano Energy 2020, 71, 104658. [Google Scholar] [CrossRef]
- Xie, D.D.; Zhang, B.; Zhang, A.J.; Chen, Y.J.; Yan, Y.C.; Yang, H.Q.; Wang, G.W.; Wang, G.Y.; Han, X.D.; Han, G.; et al. High thermoelectric performance of Cu3SbSe4 nanocrystals with Cu2-xSe in situ inclusions synthesized by a microwave-assisted solvothermal method. Nanoscale 2018, 10, 14546–14553. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.J.; Yu, L.H.; Yang, J.; Wang, M.Y.; Shao, H.C.; Wang, J.L.; Shi, Z.Q.; Wan, N.; Hussain, S.; Qiao, G.J.; et al. Enhancing thermoelectric and mechanical properties of p-type Cu3SbSe4-based materials via embedding Nanoscale Sb2Se3. Mater. Chem. Phys. 2022, 292, 126669. [Google Scholar]
- Skoug, E.J.; Cain, J.D.; Morelli, D.T. Thermoelectric properties of the Cu2SnSe3–Cu2GeSe3 solid solution. J. Alloys Compd. 2010, 506, 18–21. [Google Scholar] [CrossRef]
- Jacob, S.; Delatouche, B.; Péré, D.; Jacoba, A.; Chmielowski, R. Insights into the thermoelectric properties of the Cu2Ge(S1−xSex)3 solid solutions. Mater. Today Proc. 2017, 4, 12349–12359. [Google Scholar]
- Wang, R.F.; Dai, L.; Yan, Y.C.; Peng, K.L.; Lu, X.; Zhou, X.Y.; Wang, G.Y. Complex alloying effect on thermoelectric transport properties of Cu2Ge(Se1−xTex)3. Chin. Phys. B 2018, 27, 067201. [Google Scholar]
- Skoug, E.J.; Cain, J.D.; Morelli, D.T. High thermoelectric figure of merit in the Cu3SbSe4-Cu3SbS4 solid solution. Appl. Phys. Lett. 2011, 98, 261911. [Google Scholar] [CrossRef]
- Lu, B.B.; Wang, M.Y.; Yang, J.; Hou, H.G.; Zhang, X.Z.; Shi, Z.Q.; Liu, J.L.; Qiao, G.J.; Liu, G.W. Dense twin and domain boundaries lead to high thermoelectric performance in Sn-doped Cu3SbS4. Appl. Phys. Lett. 2022, 120, 173901. [Google Scholar]
- Zhao, K.P.; Blichfeld, A.B.; Eikeland, E.; Qiu, P.F.; Ren, D.D.; Iversen, B.B.; Shi, X.; Chen, L.D. Extremely low thermal conductivity and high thermoelectric performance in liquid-like Cu2Se1−xSx polymorphic materials. J. Mater. Chem. A 2017, 5, 18148–18156. [Google Scholar]
- Li, J.M.; Ming, H.W.; Song, C.J.; Wang, L.; Xin, H.X.; Gu, Y.J.; Zhang, J.; Qin, X.Y.; Li, D. Synergetic modulation of power factor and thermal conductivity for Cu3SbSe4-based system. Mater. Today Energy 2020, 18, 100491. [Google Scholar]
- Zhou, T.; Wang, L.J.; Zheng, S.Q.; Hong, M.; Fang, T.; Bai, P.P.; Chang, S.Y.; Cui, W.L.; Shi, X.L.; Zhao, H.Z.; et al. Self-assembled 3D flower-like hierarchical Ti-doped Cu3SbSe4 microspheres with ultralow thermal conductivity and high zT. Nano Energy 2018, 49, 221–229. [Google Scholar] [CrossRef]
- Li, X.Y.; Li, D.; Xin, H.X.; Zhang, J.; Song, C.J.; Qin, X.Y. Effects of bismuth doping the thermoelectric properties of Cu3SbSe4 at moderate temperatures. J. Alloys Compd. 2013, 561, 105–108. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Bhattacharya, A.; Tyagi, K.; Gahtori, B.; Chauhan, N.S.; Bathula, S.; Auluck, S.; Dhar, A. Tin doped Cu3SbSe4: A stable thermoelectric analogue for the mid-temperature applications. Mater. Res. Bull. 2019, 113, 38–44. [Google Scholar]
- Yang, J.; Zhang, X.Z.; Liu, G.W.; Zhao, L.J.; Liu, J.L.; Shi, Z.Q.; Ding, J.N.; Qiao, G.J. Multiscale structure and band configuration tuning to achieve high thermoelectric properties in n-type PbS bulks. Nano Energy 2020, 74, 104826. [Google Scholar]
- Yang, X.X.; Gu, Y.Y.; Li, Y.P.; Guo, K.; Zhang, J.Y.; Zhao, J.T. The equivalent and aliovalent dopants boosting the thermoelectric properties of YbMg2Sb2. Sci. China Mater. 2020, 63, 437–443. [Google Scholar]
- Goldsmid, H.J.; Sharp, J.W. Estimation of the thermal band gap of a semiconductor from Seebeck measurements. J. Electron. Mater. 1999, 28, 869–872. [Google Scholar] [CrossRef]
- Skoug, E.J.; Cain, J.D.; Majsztrik, P.; Kirkham, M.; LaraCurzio, E.; Morelli, D.T. Doping effects on the thermoelectric properties of Cu3SbSe4. Sci. Adv. Mater. 2011, 3, 602–606. [Google Scholar] [CrossRef]
- Cutler, M.; Leavy, J.F.; Fitzpatrick, R.L. Electronic transport in semimetallic cerium sulfide. Phys. Rev. 1964, 133, A1143–A1152. [Google Scholar]
- Wei, T.-R.; Tan, G.; Zhang, X.; Wu, C.-F.; Li, J.-F.; Dravid, V.P.; Snyder, G.J.; Kanatzidis, M.G. Distinct impact of Alkali-Ion doping on electrical transport properties of thermoelectric p-Type polycrystalline SnSe. J. Am. Chem. Soc. 2016, 138, 8875–8882. [Google Scholar] [CrossRef] [PubMed]
- Ge, B.Z.; Lee, H.; Im, J.; Choi, Y.; Kim, Y.-S.; Lee, J.Y.; Cho, S.-P.; Sung, Y.-E.; Choi, K.-Y.; Zhou, C.J.; et al. Engineering atomic-level crystal lattice and electronic band structure for extraordinarily high average thermoelectric figure of merit in n-type PbSe. Energy Environ. Sci. 2023, 16, 3994–4008. [Google Scholar] [CrossRef]
- Zhou, C.J.; Yu, Y.; Lee, Y.L.; Ge, B.Z.; Lu, W.Q.; Miredin, O.C.; Im, J.; Cho, S.P.; Wuttig, M.; Shi, Z.Q.; et al. Exceptionally high average power factor and thermoelectric figure of merit in n-type PbSe by the dual incorporation of Cu and Te. J. Am. Chem. Soc. 2020, 142, 15172–15186. [Google Scholar] [CrossRef]
- Mahan, G.D.; Bartkowiak, M. Wiedemann–Franz law at boundaries. Appl. Phys. Lett. 1999, 74, 953–954. [Google Scholar] [CrossRef]
- Fu, Z.; Jiang, J.L.; Dong, S.-T.; Yu, M.-C.; Zhao, L.J.; Wang, L.; Yao, S.-H. Effects of Zr substitution on structure and thermoelectric properties of Bi2O2Se. J. Mater. Res. Technol. 2022, 21, 640–647. [Google Scholar]
- Kim, H.S.; Gibbs, Z.M.; Tang, Y.G.; Wang, H.; Snyder, G.J. Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 2015, 3, 041506. [Google Scholar]
- Wang, B.Y.; Zheng, S.Q.; Chen, Y.X.; Wu, Y.; Li, J.; Ji, Z.; Mu, Y.N.; Wei, Z.B.; Liang, Q.; Liang, J.X. Band Engineering for Realizing Large Effective Mass in Cu3SbSe4 by Sn/La Co-doping. J. Phys. Chem. C 2020, 124, 10336–10343. [Google Scholar]
- Callaway, J.; von Baeyer, H.C. Effect of point imperfections on lattice thermal conductivity. Phys. Rev. 1960, 120, 1149–1154. [Google Scholar]
- Yang, J.; Meisner, G.P.; Chen, L.D. Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds. Appl. Phys. Lett. 2004, 85, 1140–1142. [Google Scholar]
- Xie, H.Y.; Su, X.L.; Zheng, G.; Zhu, T.; Yin, K.; Yan, Y.G.; Uher, C.; Kanatzidis, M.G.; Tang, X.F. The role of Zn in chalcopyrite CuFeS2: Enhanced thermoelectric properties of Cu1−xZnxFeS2 with in situ nanoprecipitates. Adv. Energy Mater. 2017, 7, 1601299. [Google Scholar]
- Wan, C.L.; Pan, W.; Xu, Q.; Qin, Y.X.; Wang, J.D.; Qu, Z.X.; Fang, M.H. Effect of point defects on the thermal transport properties of (LaxGd1−x)2Zr2O7: Experiment and theoretical model. Phys. Rev. B 2006, 74, 144109. [Google Scholar]
- Xu, B.; Zhang, X.D.; Su, Y.Z.; Zhang, J.; Wang, Y.S.; Yi, L. Elastic Anisotropy and Anisotropic Transport Properties of Cu3SbSe4 and Cu3SbS4. J. Phys. Soc. Jpn. 2014, 83, 094606. [Google Scholar]
- Yang, J.; Song, R.F.; Zhao, L.J.; Zhang, X.Z.; Hussaina, S.; Liu, G.W.; Shi, Z.Q.; Qiao, G.J. Magnetic Ni doping induced high power factor of Cu2GeSe3-based bulk materials. J. Eur. Ceram. Soc. 2021, 41, 3473–3479. [Google Scholar]
- Lu, X.; Morelli, D.T.; Wang, Y.X.; Lai, W.; Xia, Y.; Ozolins, V. Phase stability, crystal structure, and thermoelectric properties of Cu12Sb4S13-xSex solid solutions. Chem. Mater. 2016, 28, 1781–1786. [Google Scholar]
- Park, S.J.; Kim, I.H. Enhanced thermoelectric performance of Sn and Se double-doped famatinites. J. Korean Phys. Soc. 2023, 83, 57–64. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Han, H.; Lu, Z.; Yang, J.; Wu, X.; Ge, B.; Yu, L.; Shi, Z.; Karami, A.M.; Dong, S.; et al. Realizing the Ultralow Lattice Thermal Conductivity of Cu3SbSe4 Compound via Sulfur Alloying Effect. Nanomaterials 2023, 13, 2730. https://doi.org/10.3390/nano13192730
Zhao L, Han H, Lu Z, Yang J, Wu X, Ge B, Yu L, Shi Z, Karami AM, Dong S, et al. Realizing the Ultralow Lattice Thermal Conductivity of Cu3SbSe4 Compound via Sulfur Alloying Effect. Nanomaterials. 2023; 13(19):2730. https://doi.org/10.3390/nano13192730
Chicago/Turabian StyleZhao, Lijun, Haiwei Han, Zhengping Lu, Jian Yang, Xinmeng Wu, Bangzhi Ge, Lihua Yu, Zhongqi Shi, Abdulnasser M. Karami, Songtao Dong, and et al. 2023. "Realizing the Ultralow Lattice Thermal Conductivity of Cu3SbSe4 Compound via Sulfur Alloying Effect" Nanomaterials 13, no. 19: 2730. https://doi.org/10.3390/nano13192730
APA StyleZhao, L., Han, H., Lu, Z., Yang, J., Wu, X., Ge, B., Yu, L., Shi, Z., Karami, A. M., Dong, S., Hussain, S., Qiao, G., & Xu, J. (2023). Realizing the Ultralow Lattice Thermal Conductivity of Cu3SbSe4 Compound via Sulfur Alloying Effect. Nanomaterials, 13(19), 2730. https://doi.org/10.3390/nano13192730