Multi-Endpoint Toxicological Assessment of Chrysin Loaded Oil-in-Water Emulsion System in Different Biological Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Chrysin Loaded Oil-in-Water Emulsion System (Chrysin-ES)
2.3. Cell Line and Culture Conditions
2.4. Cytotoxicity Assay
2.5. Acute Oral Toxicity Test in Wistar Rats
2.6. In Vitro Mutagenicity and Anti-Mutagenicity Assessment Using Bacterial Reverse Mutation Assay (Ames Test)
- a = revertant colony number induced via standard mutagen (positive control).
- b = revertant colony number induced by standard mutagen in the presence of each sample treatment.
2.7. In Vivo Mutagenicity and Anti-Mutagenicity Assessment Using Somatic Mutation and Recombination Test in Drosophila melanogaster (Fruit Flies)
- a = number of total spots per wing of positive mutagen control group.
- b = number of total spots per wing of each experimental group.
2.8. Statistical Analysis
3. Results
3.1. The Cytotoxicity of Chrysin, Chrysin-ES, and Blank-ES
3.2. Acute Toxicity of Chrysin-ES in Wistar Rat
3.3. Genotoxicity Evaluation of Chrysin, Blank-ES, and Chrysin-ES in Bacteria and Fruit Flies
3.3.1. In Vitro Mutagenicity of Chrysin, Blank-ES, and Chrysin-ES in Salmonella Typhimurium
3.3.2. In Vivo Mutagenicity of Chrysin and Chrysin-ES in Drosophila melanogaster
3.4. Anti-Mutagenicity of Chrysin, Chrysin-ES, and Blank-ES in Bacteria and D. melanogaster
3.4.1. In Vitro Anti-Mutagenicity of Chrysin, Blank-ES, and Chrysin-ES in S. typhimurium
3.4.2. In Vivo Anti-Mutagenicity of Chrysin and Chrysin-ES in Drosophila melanogaster
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mani, R.; Natesan, V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 2018, 145, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Stompor-Gorący, M.; Bajek-Bil, A.; Machaczka, M. Chrysin: Perspectives on Contemporary Status and Future Possibilities as Pro-Health Agent. Nutrients 2021, 6, 2038. [Google Scholar] [CrossRef] [PubMed]
- Bae, Y.; Lee, S.; Kim, S.-H. Chrysin suppresses mast cell-mediated allergic inflammation: Involvement of calcium, caspase-1 and nuclear factor-κB. Toxicol. Appl. Pharmacol. 2011, 254, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Wadibhasme, P.G.; Ghaisas, M.M.; Thakurdesai, P.A. Anti-asthmatic potential of chrysin on ovalbumin-induced bronchoalveolar hyperresponsiveness in rats. Pharm. Biol. 2011, 49, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, J.-N.; Huang, J.-M.; Xiong, X.-K.; Chen, M.-F.; Ong, C.-N.; Shen, H.-M.; Yang, X.-F. Chrysin promotes tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induced apoptosis in human cancer cell lines. Toxicol. Vitr. 2011, 25, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Mishra, P.S.; Bandopadhyay, R.; Khurana, N.; Angelopoulou, E.; Paudel, Y.N.; Piperi, C. Neuroprotective Potential of Chrysin: Mechanistic Insights and Therapeutic Potential for Neurological Disorders. Molecules 2021, 26, 6456. [Google Scholar] [CrossRef] [PubMed]
- Walle, T.; Otake, Y.; Brubaker, J.A.; Walle, U.K.; Halushka, P.V. Disposition and metabolism of the flavonoid chrysin in normal volunteers. Br. J. Clin. Pharmacol. 2001, 51, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; McClements, D.J. Characterization of gastrointestinal fate of nanoemulsions. In Nanoemulsions; Elsevier: Amsterdam, The Netherlands, 2018; pp. 577–612. [Google Scholar]
- Jin, W.; Xu, W.; Liang, H.; Li, Y.; Liu, S.; Li, B. Nanoemulsions for food: Properties, production, characterization, and applications. In Emulsions; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–36. [Google Scholar]
- Sulaiman, G.M.; Jabir, M.S.; Hameed, A.H. Nanoscale modification of chrysin for improved of therapeutic efficiency and cytotoxicity. Artif. Cells Nanomed. Biotechnol. 2018, 46, 708–720. [Google Scholar] [CrossRef] [PubMed]
- Ting, P.; Srinuanchai, W.; Suttisansanee, U.; Tuntipopipat, S.; Charoenkiatkul, S.; Praengam, K.; Chantong, B.; Temviriyanukul, P.; Nuchuchua, O. Development of Chrysin Loaded Oil-in-Water Nanoemulsion for Improving Bioaccessibility. Foods 2021, 10, 1912. [Google Scholar] [CrossRef]
- Committee, E.S. Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: Human and animal health. EFSA J. 2021, 19, e06768. [Google Scholar]
- Vijay, U.; Gupta, S.; Mathur, P.; Suravajhala, P.; Bhatnagar, P. Microbial Mutagenicity Assay: Ames Test. Bio Protoc. 2018, 8, e2763. [Google Scholar] [CrossRef] [PubMed]
- Graf, U.; Singer, D. 6.5. Somatic mutation and recombination test in drosophila melanogaster (wing spot test): Effects of extracts of airborne particulate matter from fire-exposed and non fire-exposed building ventilation filters. Chemosphere 1989, 19, 1094–1097. [Google Scholar] [CrossRef]
- Pitchakarn, P.; Inthachat, W.; Karinchai, J.; Temviriyanukul, P. Human Hazard Assessment Using Drosophila Wing Spot Test as an Alternative In Vivo Model for Genotoxicity Testing-A Review. Int. J. Mol. Sci. 2021, 22, 9932. [Google Scholar] [CrossRef] [PubMed]
- Graf, U.; Würgler, F.; Katz, A.; Frei, H.; Juon, H.; Hall, C.; Kale, P. Somatic mutation and recombination test in Drosophila melanogaster. Environ. Mutagen. 1984, 6, 153–188. [Google Scholar] [CrossRef]
- Vogel, E.; Zijlstra, J. Mechanistic and methodological aspects of chemically-induced somatic mutation and recombination in Drosophila melanogaster. Mutat. Res./Environ. Mutagen. Relat. Subj. 1987, 182, 243–264. [Google Scholar] [CrossRef] [PubMed]
- Frölich, A.; Würgler, F.E. New tester strains with improved bioactivation capacity for the Drosophila wing-spot test. Mutat. Res./Environ. Mutagen. Relat. Subj. 1989, 216, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Graf, U.; van Schaik, N. Improved high bioactivation cross for the wing somatic mutation and recombination test in Drosophila melanogaster. Mutat. Res./Environ. Mutagen. Relat. Subj. 1992, 271, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Cooke, M.S.; Evans, M.D.; Dizdaroglu, M.; Lunec, J. Oxidative DNA damage: Mechanisms, mutation, and disease. Faseb J. 2003, 17, 1195–1214. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Sharma, S.; Advani, D.; Khosla, A.; Kumar, P.; Ambasta, R.K. Unboxing the molecular modalities of mutagens in cancer. Environ. Sci. Pollut. Res. Int. 2022, 29, 62111–62159. [Google Scholar] [CrossRef]
- Sugimura, T. Nutrition and dietary carcinogens. Carcinogenesis 2000, 21, 387–395. [Google Scholar] [CrossRef]
- AbdelHakem, A.M.; Abdelhafez, E.-S.M.; AbdelHakem, A.; Abdelhafez, E. Current trends and future perspectives of antimutagenic agents. In Genotoxicity and Mutagenicity-Mechanisms and Test Methods; IntechOpen: London, UK, 2020. [Google Scholar]
- Buacheen, P.; Karinchai, J.; Inthachat, W.; Butkinaree, C.; Jankam, C.; Wongnoppavich, A.; Imsumran, A.; Chewonarin, T.; Pimpha, N.; Temviriyanukul, P.; et al. The Toxicological Assessment of Anoectochilus burmannicus Ethanolic-Extract-Synthesized Selenium Nanoparticles Using Cell Culture, Bacteria, and Drosophila melanogaster as Suitable Models. Nanomaterials 2023, 13, 2804. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 423: Acute Oral toxicity—Acute Toxic Class Method; OECD: Paris, France, 2002. [Google Scholar] [CrossRef]
- OECD. Test. No. 471: Bacterial Reverse Mutation Test; OECD: Paris, France, 2020. [Google Scholar] [CrossRef]
- Phuneerub, P.; Limpanasithikul, W.; Palanuvej, C.; Ruangrungsi, N. In vitro anti-inflammatory, mutagenic and antimutagenic activities of ethanolic extract of Clerodendrum paniculatum root. J. Adv. Pharm. Technol. Res. 2015, 6, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Frei, H.; Würgler, F. Statistical methods to decide whether mutagenicity test data from Drosophila assays indicate a positive, negative, or inconclusive result. Mutat. Res./Environ. Mutagen. Relat. Subj. 1988, 203, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Rincón, J.G.; Espinosa, J.; Graf, U. Analysis of the in vivo nitrosation capacity of the larvae used in the wing somatic mutation and recombination test of Drosophila melanogaster. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 1998, 412, 69–81. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-5; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. ISO: Geneva, Switzerland, 2009.
- López-García, J.; Lehocký, M.; Humpolíček, P.; Sáha, P. HaCaT Keratinocytes Response on Antimicrobial Atelocollagen Substrates: Extent of Cytotoxicity, Cell Viability and Proliferation. J. Funct. Biomater. 2014, 5, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Dixon, D.; Alison, R.; Bach, U.; Colman, K.; Foley, G.L.; Harleman, J.H.; Haworth, R.; Herbert, R.; Heuser, A.; Long, G. Nonproliferative and proliferative lesions of the rat and mouse female reproductive system. J. Toxicol. Pathol. 2014, 27, 1S. [Google Scholar] [CrossRef] [PubMed]
- Mortelmans, K.; Zeiger, E. The Ames Salmonella/microsome mutagenicity assay. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2000, 455, 29–60. [Google Scholar] [CrossRef] [PubMed]
- Makhafola, T.J.; Elgorashi, E.E.; McGaw, L.J.; Verschaeve, L.; Eloff, J.N. The correlation between antimutagenic activity and total phenolic content of extracts of 31 plant species with high antioxidant activity. BMC Complement. Altern. Med. 2016, 16, 490. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Peng, X. Effects of chrysin on the apoptosis in oral squamous carcinoma KB cell line and the underlying mechanisms. Zhong Nan Da Xue Xue Bao. Yi Xue Ban= J. Cent. South Univ. Med. Sci. 2019, 44, 522–527. [Google Scholar]
- Chen, H.Y.; Jiang, Y.W.; Kuo, C.L.; Way, T.D.; Chou, Y.C.; Chang, Y.S.; Chung, J.G. Chrysin inhibit human melanoma A375. S2 cell migration and invasion via affecting MAPK signaling and NF-κB signaling pathway in vitro. Environ. Toxicol. 2019, 34, 434–442. [Google Scholar] [CrossRef]
- Ryu, S.; Bazer, F.W.; Lim, W.; Song, G. Chrysin leads to cell death in endometriosis by regulation of endoplasmic reticulum stress and cytosolic calcium level. J. Cell. Physiol. 2019, 234, 2480–2490. [Google Scholar] [CrossRef]
- Stompor, M.; Świtalska, M.; Wietrzyk, J. Synthesis and biological evaluation of acyl derivatives of hydroxyflavones as potent antiproliferative agents against drug resistance cell lines. Z. Für Naturforschung C 2018, 73, 87–93. [Google Scholar] [CrossRef]
- Wu, B.-L.; Wu, Z.-W.; Yang, F.; Shen, X.-F.; Wang, L.; Chen, B.; Li, F.; Wang, M.-K. Flavonoids from the seeds of Oroxylum indicum and their anti-inflammatory and cytotoxic activities. Phytochem. Lett. 2019, 32, 66–69. [Google Scholar] [CrossRef]
- Yu, X.M.; Phan, T.; Patel, P.N.; Jaskula-Sztul, R.; Chen, H. Chrysin activates Notch1 signaling and suppresses tumor growth of anaplastic thyroid carcinoma in vitro and in vivo. Cancer 2013, 119, 774–781. [Google Scholar] [CrossRef]
- Ramírez-Espinosa, J.J.; Saldaña-Ríos, J.; García-Jiménez, S.; Villalobos-Molina, R.; Ávila-Villarreal, G.; Rodríguez-Ocampo, A.N.; Bernal-Fernández, G.; Estrada-Soto, S. Chrysin induces antidiabetic, antidyslipidemic and anti-inflammatory effects in athymic nude diabetic mice. Molecules 2017, 23, 67. [Google Scholar] [CrossRef]
- Gao, S.; Siddiqui, N.; Etim, I.; Du, T.; Zhang, Y.; Liang, D. Developing nutritional component chrysin as a therapeutic agent: Bioavailability and pharmacokinetics consideration, and ADME mechanisms. Biomed. Pharmacother. 2021, 142, 112080. [Google Scholar] [CrossRef]
- Jafari, S.M.; McClements, D.J. Nanotechnology approaches for increasing nutrient bioavailability. Adv. Food Nutr. Res. 2017, 81, 1–30. [Google Scholar]
- Wani, T.; Masoodi, F.A.; Jafari, S.; McClements, D. Safety of Nanoemulsions and Their Regulatory Status; Elsevier: Amsterdam, The Netherlands, 2018; pp. 613–628. [Google Scholar]
- Yao, W.; Cheng, J.; Kandhare, A.D.; Mukherjee-Kandhare, A.A.; Bodhankar, S.L.; Lu, G. Toxicological evaluation of a flavonoid, chrysin: Morphological, behavioral, biochemical and histopathological assessments in rats. Drug Chem. Toxicol. 2021, 44, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Resende, F.A.; Vilegas, W.; Dos Santos, L.C.; Varanda, E.A. Mutagenicity of flavonoids assayed by bacterial reverse mutation (Ames) test. Molecules 2012, 17, 5255–5268. [Google Scholar] [CrossRef] [PubMed]
- NTP Comparative Toxicology Studies of Corn Oil, Safflower Oil, and Tricaprylin (CAS Nos.8001-30-7, 8001-23-8, and 538-23-8) in Male F344/N Rats as Vehicles for Gavage. Natl. Toxicol. Program Tech. Rep. Ser. 1994, 426, 1–314.
- Traul, K.A.; Driedger, A.; Ingle, D.L.; Nakhasi, D. Review of the toxicologic properties of medium-chain triglycerides. Food Chem. Toxicol. 2000, 38, 79–98. [Google Scholar] [CrossRef]
- de Cássia Ribeiro Gonçalves, R.; Rezende Kitagawa, R.; Aparecida Varanda, E.; Stella Gonçalves Raddi, M.; Andrea Leite, C.; Regina Pombeiro Sponchiado, S. Effect of biotransformation by liver S9 enzymes on the mutagenicity and cytotoxicity of melanin extracted from Aspergillus nidulans. Pharm. Biol. 2016, 54, 1014–1021. [Google Scholar] [CrossRef]
- Jia, L.; Liu, X. The conduct of drug metabolism studies considered good practice (II): In vitro experiments. Curr. Drug Metab. 2007, 8, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Nohmi, T.; Watanabe, M. Mutagenicity of carcinogenic heterocyclic amines in Salmonella typhimurium YG strains and transgenic rodents including gpt delta. Genes Environ. 2021, 43, 1–24. [Google Scholar] [CrossRef]
- Dooley, K.; Von Tungeln, L.; Bucci, T.; Fu, P.; Kadlubar, F. Comparative carcinogenicity of 4-aminobiphenyl and the food pyrolysates, Glu-P-1, IQ, PhIP, and MeIQx in the neonatal B6C3F1 male mouse. Cancer Lett. 1992, 62, 205–209. [Google Scholar] [CrossRef]
- Heo, M.Y.; Sohn, S.J.; Au, W.W. Anti-genotoxicity of galangin as a cancer chemopreventive agent candidate. Mutat. Res./Rev. Mutat. Res. 2001, 488, 135–150. [Google Scholar] [CrossRef] [PubMed]
- Słoczyńska, K.; Powroźnik, B.; Pękala, E.; Waszkielewicz, A.M. Antimutagenic compounds and their possible mechanisms of action. J. Appl. Genet. 2014, 55, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Kemper, R.A.; Myers, S.R.; Hurst, H.E. Detoxification of vinyl carbamate epoxide by glutathione: Evidence for participation of glutathione S-transferases in metabolism of ethyl carbamate. Toxicol. Appl. Pharmacol. 1995, 135, 110–118. [Google Scholar] [CrossRef]
- Tahir, M.; Sultana, S. Chrysin modulates ethanol metabolism in Wistar rats: A promising role against organ toxicities. Alcohol Alcohol. 2011, 46, 383–392. [Google Scholar] [CrossRef]
- Korobkova, E.A. Effect of natural polyphenols on CYP metabolism: Implications for diseases. Chem. Res. Toxicol. 2015, 28, 1359–1390. [Google Scholar] [CrossRef]
- Li, F.; Xu, J.; Zhou, J.; Zhao, L.; Sheng, J.; Sun, G.; Hu, Q. Inhibition of mitomycin C-induced chromosomal aberrations by micrometer powder of selenium-enriched green tea in mice spermatocytes. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2009, 675, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Dubrow, R.; Darefsky, A.S.; Park, Y.; Mayne, S.T.; Moore, S.C.; Kilfoy, B.; Cross, A.J.; Sinha, R.; Hollenbeck, A.R.; Schatzkin, A.; et al. Dietary components related to N-nitroso compound formation: A prospective study of adult glioma. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1709–1722. [Google Scholar] [CrossRef] [PubMed]
Sample | IC20 (µM) | IC50 (µM) | ||||||
---|---|---|---|---|---|---|---|---|
3T3-L1 | RAW 264.7 | HEK-293 | LX-2 | 3T3-L1 | RAW 264.7 | HEK-293 | LX-2 | |
Chrysin | >90 | 43 ± 3.6 | 53 ± 19.4 | 52 ± 13.0 | >90 | 69 ± 3.8 | >90 | >90 |
Chrysin-ES | >90 | 8 ± 3.8 c | 35 ± 14.1 a | 37 ± 3.2 | >90 | 14 ± 3.2 c | 72 ± 13.1 | 61 ± 8.8 c |
Blank-ES | >90 | 9 ± 3.2 c | 35 ± 12.2 b | 26 ± 6.3 | >90 | 27 ± 4.3 c,d | 61 ± 7.5 b | 38 ± 9.9 c,e |
Group | Chrysin-ES (mg/kg BW) | Body Weight (g) | Body Weight Change (%) | ||||
---|---|---|---|---|---|---|---|
Acclimatization | Day 0 | Day 7 | Day 14 | Terminate | |||
1 | 300 | 199 ± 5.0 | 200 ± 7.6 | 222 ± 15.3 | 239 ± 17.4 | 235 ± 15.5 | 19.38 ± 4.6 |
2 | 300 | 196 ± 2.5 | 200 ± 2.5 | 221 ± 1.0 | 240 ± 8.1 | 236 ± 7.8 | 19.62 ± 2.9 |
3 | 2000 | 191 ± 3.1 | 203 ± 1.5 | 234 ± 6.2 | 248 ± 7.0 | 244 ± 6.2 | 22.22 ± 3.8 |
4 | 2000 | 192 ± 2.0 | 202 ± 3.5 | 225 ± 7.5 | 237 ± 2.5 | 232 ± 2.8 | 17.38 ± 2.1 |
Treatments | Number of Revertant Colonies a | |||
---|---|---|---|---|
TA98 | TA100 | |||
+S9 | −S9 | +S9 | −S9 | |
DMSO (negative control) | 26 ± 4 | 22 ± 5 | 129 ± 12 | 125 ± 11 |
2-AA (0.5 µg/plate) | 459 ± 44 | ND | 487 ± 29 | ND |
AF-2 (0.1 µg/plate) | ND | 379 ± 30 | ND | 439 ± 30 |
Chrysin | ||||
5.7 µM/plate | 27 ± 7 | 22 ± 6 | 136 ± 12 | 120 ± 6 |
11.4 µM/plate | 26 ± 8 | 23 ± 5 | 131 ± 7 | 115 ± 7 |
22.8 µM/plate | 27 ± 8 | 23 ± 7 | 136 ± 8 | 117 ± 4 |
Blank-ES | ||||
5.7 µM/plate | 26 ± 9 | 22 ± 5 | 113 ± 10 | 119 ± 7 |
11.4 µM/plate | 26 ± 8 | 21 ± 3 | 136 ± 6 | 124 ± 8 |
22.8 µM/plate | 31 ± 8 | 26 ± 3 | 132 ± 10 | 128 ± 6 |
Chrysin-ES | ||||
5.7 µM/plate | 26 ± 8 | 24 ± 7 | 128 ± 8 | 121 ± 9 |
11.4 µM/plate | 25 ± 6 | 23 ± 6 | 131 ± 10 | 117 ± 4 |
22.8 µM/plate | 30 ± 9 | 29 ± 7 | 131 ± 8 | 130 ± 10 |
Samples | Frequency of Mutant Spots per Individual (Number of Spots) a | |||
---|---|---|---|---|
Small Single (m = 2) | Large Single (m = 5) | Twin (m = 5) | Total Spots (m = 2) | |
DI (negative control) | 1.23 (49) | 0 (0) | 0 (0) | 1.23 (49) |
URE (20 mM) | 3.73 (149) + | 0.08 (3) + | 0 (0) i | 3.80 (152) + |
10% EtOH in PBS | 1.00 (40) − | 0 (0) i | 0 (0) i | 1.00 (40) − |
Chrysin | ||||
20 µg/mL | 0.38 (15) − | 0 (0) i | 0 (0) i | 0.38 (15) − |
40 µg/mL | 0.35 (14) − | 0.03 (1) i | 0 (0) i | 0.38 (15) − |
80 µg/mL | 0.58 (23) − | 0 (0) i | 0 (0) i | 0.58 (23) − |
120 µg/mL | 0.83 (33) − | 0.08 (3) i | 0 (0) i | 0.90 (36) − |
Chrysin-ES | ||||
20 µg/mL | 0.43 (17) − | 0 (0) i | 0 (0) i | 0.43 (17) − |
40 µg/mL | 0.45 (18) − | 0.08 (3) i | 0 (0) i | 0.53 (21) − |
80 µg/mL | 0.60 (24) − | 0 (0) i | 0 (0) i | 0.60 (24) − |
120 µg/mL | 1.28 (51) − | 0.08 (3) i | 0 (0) i | 1.35 (54) − |
Samples | Frequency of Mutant Spots per Individual (Number of Spots) a | |||
---|---|---|---|---|
Small Single (m = 2) | Large Single (m = 5) | Twin (m = 5) | Total Spots (m = 2) | |
DI (negative control) | 0.15 (6) | 0 (0) | 0 (0) | 0.15 (6) |
URE (20 mM) | 10.10 (202) + | 3.10 (62) + | 1.30 (26) + | 14.50 (290) + |
10% EtOH in PBS | 0.08 (3) − | 0 (0) i | 0 (0) i | 0.08 (3) − |
Chrysin | ||||
20 µg/mL | 0.18 (7) i | 0.03 (1) i | 0.03 (1) i | 0.23 (9) i |
40 µg/mL | 0.13 (5) i | 0.03 (1) i | 0 (0) i | 0.15 (6) i |
80 µg/mL | 0.13 (5) i | 0.03 (1) i | 0 (0) i | 0.15 (6) i |
120 µg/mL | 0.08 (3) − | 0 (0) i | 0 (0) i | 0.08 (3) − |
Chrysin-ES | ||||
20 µg/mL | 0.18 (7) i | 0 (0) i | 0 (0) i | 0.18 (7) i |
40 µg/mL | 0.18 (7) i | 0 (0) i | 0 (0) i | 0.18 (7) i |
80 µg/mL | 0.30 (12) i | 0 (0) i | 0 (0) i | 0.30 (12) i |
120 µg/mL | 0.05 (2) − | 0 (0) i | 0 (0) i | 0.05 (2) − |
Sample | TA98 | TA100 | ||
---|---|---|---|---|
AF-2 (0.1 µg/Plate) | AF-2 (0.1 µg/Plate) | |||
Number of Revertant Colonies a | Inhibitory Classification | Number of Revertant Colonies a | Inhibitory Classification | |
Standard mutagen | 252 ± 12 | ND | 396 ± 11 | ND |
Blank-ES | ||||
5.7 µM/plate | 193 ± 24 (23) b | Mild | 349 ± 40 (6) | Negligible |
11.4 µM/plate | 120 ± 15 (52) | Moderate | 400 ± 13 (−8) | NA |
22.8 µM/plate | 36 ± 8 (86) | Strong | 407 ± 44 (−10) | NA |
Chrysin | ||||
5.7 µM/plate | 166 ± 23 (34) | Mild | 252 ± 14 (32) | Mild |
11.4 µM/plate | 140 ± 39 (45) | Moderate | 250 ± 6 (32) | Mild |
22.8 µM/plate | 164 ± 56 (35) | Mild | 235 ± 20 (37) | Mild |
Chrysin-ES | ||||
5.7 µM/plate | 182 ± 23 (28) | Mild | 321 ± 33 (13) | Negligible |
11.4 µM/plate | 141 ± 26 (44) | Moderate | 338 ± 26 (9) | Negligible |
22.8 µM/plate | 54 ± 18 (78) | Strong | 375 ± 36 (−1) | Negligible |
Sample | TA98 | TA100 | ||
---|---|---|---|---|
PhIP (0.1 µg/Plate) | IQ (0.05 µg/Plate) | |||
Number of Revertant Colonies a | Inhibitory Classification | Number of Revertant Colonies a | Inhibitory Classification | |
Standard mutagen | 400 ± 11 | ND | 730 ± 39 | ND |
Blank-ES | ||||
5.7 µM/plate | 169 ± 45 (53) b | Moderate | 497 ± 36 (32) | Mild |
11.4 µM/plate | 104 ± 33 (71) | Strong | 335 ± 19 (54) | Strong |
22.8 µM/plate | 81 ± 16 (78) | Strong | 198 ± 63 (73) | Strong |
Chrysin | ||||
0.35 µM/plate | 214 ± 9 (46) | Moderate | 328 ± 32 (56) | Moderate |
0.70 µM/plate | 153 ± 10 (62) | Strong | 243 ± 16 (67) | Strong |
1.40 µM/plate | 77 ± 12 (81) | Strong | 161 ± 10 (78) | Strong |
2.85 µM/plate | 71 ± 9 (82) | Strong | 106 ± 15 (86) | Strong |
5.70 µM/plate | 45 ± 18 (89) | Strong | 47 ± 10 (94) | Strong |
Chrysin-ES | ||||
0.35 µM/plate | 259 ± 16 (35) | Mild | 431 ± 16 (42) | Moderate |
0.70 µM/plate | 221 ± 24 (45) | Moderate | 221 ± 31 (70) | Strong |
1.40 µM/plate | 136 ± 8 (66) | Strong | 111 ± 8 (85) | Strong |
2.85 µM/plate | 73 ± 5 (82) | Strong | 53 ± 93 (93) | Strong |
5.70 µM/plate | 43 ± 19 (89) | Strong | 25 ± 11 (97) | Strong |
Sample | Frequency of Mutant Spots per Individual (Number of Spots) a | Inhibition (%) | Inhibitory Classification | |||
---|---|---|---|---|---|---|
Small Single (1–2 Cells) | Large Single (>2 Cells) | Twin (m = 5) | Total (m = 2) | |||
Negative control | 1.00 (40) | 0 (0) | 0 (0) | 1.00 (40) | ND | ND |
URE | 3.70 (148) + | 0.15 (6) + | 0.05 (2) + | 3.90 (156) + | ND | ND |
10%EtOH in PBS | 1.43 (57) i | 0 (0) i | 0 (0) i | 1.43 (57) i | ND | ND |
Chrysin | ||||||
20 μg/mL | 0.23 (9) | 0 (0) | 0 (0) | 0.23 (9) | 94 | Strong |
40 μg/mL | 0.33 (13) | 0.03 (1) | 0 (0) | 0.35 (14) | 91 | Strong |
80 μg/mL | 0.35 (14) | 0 (0) | 0 (0) | 0.35 (14) | 91 | Strong |
120 μg/mL | 0.55 (22) | 0.03 (1) | 0 (0) | 0.56 (23) | 86 | Strong |
Chrysin-ES | ||||||
20 μg/mL | 0.18 (7) | 0 (0) | 0 (0) | 0.18 (7) | 95 | Strong |
40 μg/mL | 0.68 (27) | 0 (0) | 0 (0) | 0.68 (27) | 83 | Strong |
80 μg/mL | 0.30 (12) | 0.03 (1) | 0 (0) | 0.33 (13) | 92 | Strong |
120 μg/mL | 0.55 (22) | 0.03 (1) | 0.03 (1) | 0.60 (24) | 85 | Strong |
Sample | Frequency of Mutant Spots per Individual (Number of Spots) a | Inhibition (%) | Inhibitory Classification | |||
---|---|---|---|---|---|---|
Small Single (1–2 Cells) | Large Single (>2 Cells) | Twin (m = 5) | Total (m = 2) | |||
Negative control | 0.30 (12) | 0.03 (1) | 0.05 (2) | 0.38 (15) | ND | ND |
URE | 8.20 (328) + | 1.60 (64) + | 0.70 (28) + | 10.6 (424) + | ND | ND |
10%EtOH in PBS | 0.18 (7) − | 0 (0) i | 0 (0) i | 0.18 (7) − | ND | ND |
Chrysin | ||||||
20 μg/mL | 1.55 (62) | 0.15 (6) | 0 (0) | 1.70 (68) | 84 | Strong |
40 μg/mL | 1.75 (70) | 0 (0) | 0 (0) | 1.75 (70) | 84 | Strong |
80 μg/mL | 0.88 (35) | 0.03 (1) | 0 (0) | 0.90 (36) | 92 | Strong |
120 μg/mL | 1.08 (43) | 0.08 (3) | 0.03 (1) | 1.18 (47) | 89 | Strong |
Chrysin-ES | ||||||
20 μg/mL | 1.95 (78) | 0.10 (4) | 0.10 (4) | 2.15 (86) | 80 | Strong |
40 μg/mL | 1.83 (73) | 0.25 (10) | 0.10 (4) | 2.18 (87) | 79 | Strong |
80 μg/mL | 0.70 (28) | 0.03 (1) | 0.03 (1) | 0.75 (30) | 93 | Strong |
120 μg/mL | 0.58 (23) | 0.05 (2) | 0 (0) | 0.63 (25) | 94 | Strong |
Sample | Frequency of Mutant Spots per Individual (Number of Spots) a | Inhibition (%) | Inhibitory Classification | |||
---|---|---|---|---|---|---|
Small Single (1–2 Cells) | Large Single (>2 Cells) | Twin (m = 5) | Total (m = 2) | |||
Negative control | 0.93 (37) | 0.08 (3) | 0 (0) | 1.00 (40) | ND | ND |
MMC | 6.93 (277) + | 2.08 (83) + | 0.75 (30) + | 9.75 (390) + | ND | ND |
0.0125% DMSO | 0.08 (3) − | 0.03 (1) − | 0 (0) i | 0.1 (4) − | ND | ND |
10%EtOH in PBS | 0.88 (35) − | 0 (0) − | 0 (0) i | 0.88 (35) − | ND | ND |
Chrysin | ||||||
20 μg/mL | 8.05 (322) | 1.45 (58) | 0.35 (14) | 9.85 (394) | −1 | NA |
40 μg/mL | 4.98 (199) | 1.35 (54) | 0.53 (21) | 6.85 (274) | 30 | Weak |
80 μg/mL | 4.48 (179) | 1.63 (65) | 0.73 (29) | 6.83 (273) | 30 | Weak |
120 μg/mL | 1.50 (60) | 0.58 (23) | 0.18 (7) | 2.25 (90) | 77 | Strong |
Chrysin-ES | ||||||
20 μg/mL | 4.25 (170) | 1.50 (60) | 0.18 (7) | 5.93 (237) | 39 | week |
40 μg/mL | 2.85 (114) | 1.75 (70) | 0.25 (10) | 4.85 (194) | 50 | moderate |
80 μg/mL | 4.00 (80) | 0.40 (8) | 0.08 (3) | 4.55 (91) | 53 | moderate |
120 μg/mL | 1.40 (56) | 0.18 (7) | 0.05 (2) | 1.63 (65) | 83 | Strong |
Sample | Frequency of Mutant Spots per Individual (Number of Spots) a | Inhibition (%) | Inhibitory Classification | |||
---|---|---|---|---|---|---|
Small Single (1–2 Cells) | Large Single (>2 Cells) | Twin (m = 5) | Total (m = 2) | |||
Negative control | 0.13 (5) | 0.03 (1) | 0 (0) | 0.15 (6) | ND | ND |
MMC | 2.90 (116) + | 1.43 (57) + | 0.55 (22) + | 4.88 (195) + | ND | ND |
0.0125% DMSO | 0.20 (8) i | 0 (0) i | 0 (0) i | 0.20 (8) i | ND | ND |
10%EtOH in PBS | 0.15 (6) i | 0 (0) i | 0 (0) i | 0.15 (6) i | ND | ND |
Chrysin | ||||||
20 μg/mL | 3.70 (148) | 0.85 (34) | 0.10 (4) | 4.65 (186) | 5 | Negligible |
40 μg/mL | 1.63 (65) | 0.18 (7) | 0.13 (5) | 1.93 (77) | 60 | Strong |
80 μg/mL | 0.98 (39) | 0.08 (3) | 0 (0) | 1.05 (42) | 79 | Strong |
120 μg/mL | 0.55 (22) | 0.03 (1) | 0 (0) | 0.58 (23) | 88 | Strong |
Chrysin-ES | ||||||
20 μg/mL | 0.35 (14) | 0.03 (1) | 0 (0) | 0.38 (15) | 92 | Strong |
40 μg/mL | 0.18 (7) | 0 (0) | 0 (0) | 0.18 (7) | 96 | Strong |
80 μg/mL | 0.13 (5) | 0 (0) | 0 (0) | 0.13 (5) | 97 | Strong |
120 μg/mL | 0.28 (11) | 0 (0) | 0 (0) | 0.28 (11) | 94 | Strong |
Sample | Frequency of Mutant Spots per Individual (Number of Spots) a | Inhibition (%) | Inhibitory Classification | |||
---|---|---|---|---|---|---|
Small Single (1–2 Cells) | Large Single (>2 Cells) | Twin (m = 5) | Total (m = 2) | |||
Negative control | 0.93 (37) | 0.08 (3) | 0 (0) | 1.00 (40) | ND | ND |
EMS | 5.60 (224) + | 1.75 (70) + | 0.45 (18) + | 7.80 (312) + | ND | ND |
10%EtOH in PBS | 0.90 (36) − | 0 (0) − | 0 (0) i | 0.90 (36) − | ND | ND |
Chrysin | ||||||
20 μg/mL | 4.88 (195) | 1.28 (51) | 0.20 (8) | 6.35 (254) | 19 | Negligible |
40 μg/mL | 4.28 (117) | 0.93 (37) | 0.35 (14) | 4.20 (168) | 46 | Moderate |
80 μg/mL | 3.50 (140) | 0.35 (14) | 0.10 (4) | 3.95 (158) | 49 | Moderate |
120 μg/mL | 3.40 (136) | 0.88 (35) | 0.28 (11) | 4.55 (182) | 42 | Moderate |
Chrysin-ES | ||||||
20 μg/mL | 4.93 (197) | 0.63 (25) | 0.20 (8) | 5.75 (230) | 26 | Weak |
40 μg/mL | 4.08 (163) | 0.58 (23) | 0.13 (5) | 4.78 (191) | 39 | Weak |
80 μg/mL | 3.80 (152) | 0.43 (17) | 0.30 (12) | 4.53 (181) | 42 | Moderate |
120 μg/mL | 2.73 (109) | 0.55 (22) | 0.20 (8) | 3.48 (139) | 55 | Moderate |
Sample | Frequency of Mutant Spots per Individual (Number of Spots) a | Inhibition (%) | Inhibitory Classification | |||
---|---|---|---|---|---|---|
Small Single (1–2 Cells) | Large Single (>2 Cells) | Twin (m = 5) | Total (m = 2) | |||
Negative control | 0.03 (1) | 0.05 (2) | 0 (0) | 0.08 (3) | ND | ND |
EMS | 10.00 (400) + | 0.40 (16) + | 0 (0) i | 10.40 (416) | ND | ND |
10%EtOH in PBS | 0.18 (7) + | 0 (0) i | 0.03 (1) i | 0.20 (8) i | ND | ND |
Chrysin | ||||||
20 μg/mL | 5.3 (212) | 1.63 (65) | 0.88 (35) | 7.80 (312) | 25 | Weak |
40 μg/mL | 6.03 (241) | 0.78 (31) | 0.33 (13) | 7.13 (285) | 31 | Weak |
80 μg/mL | 3.23 (129) | 0.73 (29) | 0.23 (9) | 4.18 (167) | 60 | Moderate |
120 μg/mL | 2.20 (88) | 0.20 (8) | 0.13 (5) | 2.53 (101) | 76 | Strong |
Chrysin-ES | ||||||
20 μg/mL | 5.68 (227) | 0.33 (13) | 0.20 (8) | 6.20 (248) | 40 | Weak |
40 μg/mL | 3.95 (158) | 0.95 (38) | 0.18 (7) | 5.08 (203) | 51 | Moderate |
80 μg/mL | 2.68 (107) | 0.15 (6) | 0.08 (3) | 2.90 (116) | 72 | Strong |
120 μg/mL | 2.10 (84) | 0.23 (9) | 0.20 (8) | 2.53 (101) | 76 | Strong |
Sample | Frequency of Mutant Spots per Individual (Number of Spots) a | Inhibition (%) | Inhibitory Classification | |||
---|---|---|---|---|---|---|
Small Single (1–2 Cells) | Large Single (>2 Cells) | Twin (m = 5) | Total (m = 2) | |||
Negative control | 0.18 (7) | 0.05 (2) | 0 (0) | 0.23 (9) | ND | ND |
Nitrite | 0.05 (2) − | 0 (0) | 0.03 (1) i | 0.08 (3) − | ND | ND |
Methylurea | 0.08 (3) − | 0.03 (1) i | 0 (0) i | 0.10 (4) − | ND | ND |
NMU | 1.70 (68) + | 0.10 (4) i | 0.20 (8) + | 2.00 (80) + | ND | ND |
10%EtOH in PBS | 1.08 (43) − | 0 (0) | 0 (0) | 1.08 (43) | ND | ND |
Chrysin | ||||||
20 μg/mL | 0.15 (6) | 0.03 (1) | 0.05 (2) | 0.23 (9) | 89 | Strong |
40 μg/mL | 0.18 (7) | 0 (0) | 0 (0) | 0.18 (7) | 91 | Strong |
80 μg/mL | 0.18 (7) | 0 (0) | 0 (0) | 0.18 (7) | 91 | Strong |
120 μg/mL | 0.13 (5) | 0.08 (3) | 0 (0) | 0.20 (8) | 90 | Strong |
Chrysin-ES | ||||||
20 μg/mL | 0.10 (4) | 0.05 (2) | 0 (0) | 0.15 (6) | 93 | Strong |
40 μg/mL | 0.08 (3) | 0.03 (1) | 0 (0) | 0.10 (4) | 95 | Strong |
80 μg/mL | 0.15 (6) | 0 (0) | 0 (0) | 0.15 (6) | 93 | Strong |
120 μg/mL | 0.28 (11) | 0.03 (1) | 0 (0) | 0.30 (12) | 85 | Strong |
Sample | Frequency of Mutant Spots per Individual (Number of Spots) a | Inhibition (%) | Inhibitory Classification | |||
---|---|---|---|---|---|---|
Small Single (1–2 Cells) | Large Single (>2 Cells) | Twin (m = 5) | Total (m = 2) | |||
Negative control | 0.73 (29) | 0.08 (3) | 0 (0) | 0.80 (32) | ND | ND |
Nitrite | 0.25 (10) − | 0.03 (1) i | 0 (0) i | 0.28 (11) i | ND | ND |
Methylurea | 0.18 (7) − | 0.03 (1) i | 0.03 (1) i | 0.23 (9) i | ND | ND |
NMU | 1.43 (57) − | 0.40 (16) + | 0.10 (4) i | 1.93 (77) + | ND | ND |
10%EtOH in PBS | 0.23 (9) i | 0 (0) i | 0 (0) i | 0.23 (9) i | ND | ND |
Chrysin | ||||||
20 μg/mL | 0.78 (25) | 0.09 (3) | 0 (0) | 0.88 (28) | 54 | Moderate |
40 μg/mL | 0.30 (12) | 0.05 (2) | 0.03 (1) | 0.38 (15) | 80 | Strong |
80 μg/mL | 0.32 (9) | 0.04 (1) | 0 (0) | 0.36 (10) | 81 | Strong |
120 μg/mL | 0.05 (2) | 0.05 (2) | 0 (0) | 0.10 (4) | 95 | Strong |
Chrysin-ES | ||||||
20 μg/mL | 0.73 (29) | 0.03 (1) | 0 (0) | 0.75 (30) | 61 | Strong |
40 μg/mL | 0.90 (36) | 0.05 (2) | 0.05 (2) | 1.00 (40) | 48 | Moderate |
80 μg/mL | 0.38 (15) | 0.10 (4) | 0.03 (1) | 0.50 (20) | 74 | Strong |
120 μg/mL | 0.25 (10) | 0.05 (2) | 0 (0) | 0.30 (12) | 84 | Strong |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pitchakarn, P.; Ting, P.; Buacheen, P.; Karinchai, J.; Inthachat, W.; Chantong, B.; Suttisansanee, U.; Nuchuchua, O.; Temviriyanukul, P. Multi-Endpoint Toxicological Assessment of Chrysin Loaded Oil-in-Water Emulsion System in Different Biological Models. Nanomaterials 2024, 14, 1001. https://doi.org/10.3390/nano14121001
Pitchakarn P, Ting P, Buacheen P, Karinchai J, Inthachat W, Chantong B, Suttisansanee U, Nuchuchua O, Temviriyanukul P. Multi-Endpoint Toxicological Assessment of Chrysin Loaded Oil-in-Water Emulsion System in Different Biological Models. Nanomaterials. 2024; 14(12):1001. https://doi.org/10.3390/nano14121001
Chicago/Turabian StylePitchakarn, Pornsiri, Pisamai Ting, Pensiri Buacheen, Jirarat Karinchai, Woorawee Inthachat, Boonrat Chantong, Uthaiwan Suttisansanee, Onanong Nuchuchua, and Piya Temviriyanukul. 2024. "Multi-Endpoint Toxicological Assessment of Chrysin Loaded Oil-in-Water Emulsion System in Different Biological Models" Nanomaterials 14, no. 12: 1001. https://doi.org/10.3390/nano14121001
APA StylePitchakarn, P., Ting, P., Buacheen, P., Karinchai, J., Inthachat, W., Chantong, B., Suttisansanee, U., Nuchuchua, O., & Temviriyanukul, P. (2024). Multi-Endpoint Toxicological Assessment of Chrysin Loaded Oil-in-Water Emulsion System in Different Biological Models. Nanomaterials, 14(12), 1001. https://doi.org/10.3390/nano14121001