The Effect of Electric Aging on Vinylidene Fluoride Copolymers for Ferroelectric Memory
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, T.T.; Herbert, J.M.; Glass, A.M. The Applications of Ferroelectric Polymers; Blackie and Son, Bishopbriggs: Glasgow, UK, 1988. [Google Scholar]
- Nalwa, H.S. Ferroelectric Polymers: Chemistry: Physics, and Applications; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Sessler, G.M.; Das-Gupta, D.K.; DeReggi, A.S.; Eisenmenger, W.; Furukawa, T.; Giacometti, J.A.; Gerhard-Multhaupt, R. Piezo-and pyroelectricity in electrets, caused by charges, dipoles or both. IEEE Trans. Dielectr. Electr. Insul. 1992, 27, 872–897. [Google Scholar] [CrossRef]
- Asadi, K. (Ed.) Organic Ferroelectric Materials and Applications; Woodhead Publishing: Sawston, UK; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Scott, J.F.; Pouligny, B.; Dimmler, K.; Parris, M.; Butler, D.; Eaton, S. Activation field, fatigue, and waiting-time effects in KNO3 thin-film memories. J. Appl. Phys. 1987, 62, 4510–4513. [Google Scholar] [CrossRef]
- Scott, J.F. Raman spectroscopy of submicron KNO3 films. II. Fatigue and space-charge effects. J. Appl. Phys. 1988, 64, 1547. [Google Scholar] [CrossRef]
- Miller, S.L.; McWhorter, J. Physics of the ferroelectric nonvolatile memory field effect transistor. J. Appl. Phys. 1992, 72, 5999–6009. [Google Scholar] [CrossRef]
- Scott, J.F. Dawber Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics. Appl. Phys. Lett. 2000, 76, 3801–3803. [Google Scholar] [CrossRef]
- Schenk, T.; Yurchuk, E.; Mueller, S.; Schroeder, E.; Starschich, S.; Bottger, U.; Mikolajick, T. About the deformation of ferroelectric hysteresis. Appl. Phys. Rev. 2014, 1, 041103. [Google Scholar] [CrossRef]
- Mihara, T.; Watanabe, H.; Yoshimori, H.; De Araujo, C.P.; Melnick, B.R.A.D.; McMillan, L.D. Process dependent electrical characteristics and equivalent circuit model of sol-gel based PZT capacitors. Integr. Ferroelectr. 1992, 1, 269–291. [Google Scholar] [CrossRef]
- Colla, E.L.; Hong, S.; Taylor, D.V.; Tagantsev, A.K.; Setter, N.; No, K. Direct observation of region by region suppression of the switchable polarization (fatigue) in Pb (Zr, Ti) O3 thin film capacitors with Pt electrodes. Appl. Phys. Lett. 1998, 72, 2763–2765. [Google Scholar] [CrossRef]
- Lou, X.J.; Wang, J. Bipolar and unipolar electrical fatigue in ferroelectric lead zirconate titanate thin films: An experimental comparison study. J. Appl. Phys. 2010, 108, 034104. [Google Scholar] [CrossRef]
- J Lee, J.J.; Thio, C.L.; Desu, S.B. Electrode contacts on ferroelectric Pb (ZrxTi1−x) O3 and SrBi2Ta2O9 thin films and their influence on fatigue properties. J. Appl. Phys. 1995, 78, 5073–5078. [Google Scholar] [CrossRef]
- Park, Y.J.; Kang, S.J.; Lotz, B.; Brinkmann, M.; Thierry, A.; Kim, K.J.; Park, C. Ordered ferroelectric PVDF−TrFE thin films by high throughput epitaxy for nonvolatile polymer memory. Macromolecules 2008, 41, 8648–8654. [Google Scholar] [CrossRef]
- Noda, K.; Ishida, K.; Kubono, A.; Horiuchi, T.; Yamada, H.; Matsushige, K. Remanent polarization of evaporated films of vinylidene fluoride oligomers. J. Appl. Phys. 2003, 93, 2866–2870. [Google Scholar] [CrossRef]
- Xu, H.; Li, G.; Zhang, Y.; Zhang, X.; Gu, Y.; Shen, D.; Meng, X. The preparation and ferroelectric properties of defect-free ultrathin films of vinylidene fluoride oligomer. J. Appl. Phys. 2010, 107, 034101. [Google Scholar] [CrossRef]
- Chen, S.; Yao, K.; Tay, F.E.H.; Chew, L.L.S. Comparative investigation of the structure and properties of ferroelectric poly (vinylidene fluoride) and poly (vinylidene fluoride–trifluoroethylene) thin films crystallized on substrates. J. Appl. Polym. Sci. 2010, 116, 3331–3337. [Google Scholar] [CrossRef]
- Shikovaa, T.G.; Kholodkova, I.V.; Smirnova, S.A.; Gorberg, B.L.; Makeev, M.O.; Mikhalev, P.A.; Osipkov, A.S. Kinetic features of plasma-chemical modification of polyvinylidene fluoride in plasma. High Energy Chem. 2024, 58, 265–270. [Google Scholar] [CrossRef]
- Mao, D.; Mejia, I.; Stiegler, H.; Gnade, B.E.; Quevedo-Lopez, M.A. Polarization behavior of poly (vinylidene fluoride-trifluoroethylene) copolymer ferroelectric thin film capacitors for nonvolatile memory application in flexible electronics. J. Appl. Phys. 2010, 108, 094102. [Google Scholar] [CrossRef]
- Nozaki, S.; Ishida, K.; Matsumoto, A.; Horie, S.; Kuwajima, S.; Yamada, H.; Matsushige, K. Characterization of ferroelectric/metal interface under the repeated polarization switching. Thin Solid Film. 2008, 516, 2450–2453. [Google Scholar] [CrossRef]
- Kocherevinskii, V.V.; Chubunova, E.V.; Bedin, S.A. An effect of electrode material on pinning layer characteristics and depolarization field in polymer ferroelectrics. J. Appl. Phys. 2018, 124, 064102. [Google Scholar] [CrossRef]
- Ishii, H.; Sugiyama, K.; Ito, E.; Seki, K. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 1999, 11, 605–625. [Google Scholar] [CrossRef]
- Kochervinskii, V.V.; Buryanskaya, E.L.; Osipkov, A.S.; Ryzhenko, D.S.; Kiselev, D.A.; Lokshin, B.V.; Kirakosyan, G.A. The Domain and Structural Characteristics of Ferroelectric Copolymers Based on Vinylidene Fluoride Copolymer with Tetrafluoroethylene Composition (94/6). Polymers 2024, 16, 233. [Google Scholar] [CrossRef]
- Kochervinskii, V.V.; Buryanskaya, E.L.; Makeev, M.O.; Mikhalev, A.; Kiselev, D.A.; Ilina, T.S.; Kirakosyan, G.A. Effect of Composition and Surface Microstructure in Self-Polarized Ferroelectric Polymer Films on the Magnitude of the Surface Potential. Nanomaterials 2023, 13, 2851. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, J.; Wei, L.; Zhu, Q.; Xie, S.; Liu, J.; Meng, X.; Li, J. Photo-induced ferroelectric switching in perovskite CH3NH3PbI3 films. Nanoscale 2017, 9, 3806–3817. [Google Scholar] [CrossRef]
- Wang, H.; Zeng, K. Domain structure, local surface potential distribution and relaxation of Pb (Zn1/3Nb2/3)O3–9% PbTiO3 (PZN–9% PT) single crystals. J. Mater. 2016, 2, 309–315. [Google Scholar] [CrossRef]
- Tian, B.B.; Zhao, X.L.; Liu, B.L.; Wang, J.L.; Han, L.; Sun, J.L.; Meng, X.J.; Chu, J.H. Abnormal polarization switching of relaxor terpolymer films at low temperatures. Appl. Phys. Lett. 2013, 102, 072906. [Google Scholar] [CrossRef]
- Guan, F.; Wang, J.; Yang, L.; Tseng, J.K.; Han, K.; Wang, Q.; Zhu, L. Confinement-induced high-field antiferroelectric-like behavior in a poly (vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymer. Macromolecules 2011, 44, 2190–2199. [Google Scholar] [CrossRef]
- He, X.; Yao, K.; Gan, B.K. Phase transition and properties of a ferroelectric poly (vinylidene fluoride-hexafluoropropylene) copolymer. J. Appl. Phys. 2005, 97, 084101. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Allahyarov, E.; Taylor, P.L.; Zhang, Q.M.; Zhu, L. Novel polymer ferroelectric behavior via crystal isomorphism and the nanoconfinement effect. Polymer 2013, 54, 1709–1728. [Google Scholar] [CrossRef]
- Xia, W.; Zhang, Z. PVDF-based dielectric polymers and their applications in electronic materials. IET Nanodielectrics 2018, 1, 17–31. [Google Scholar] [CrossRef]
- Gadinski, M.R.; Li, Q.; Zhang, G.; Zhang, X.; Wang, Q. Understanding of relaxor ferroelectric behavior of poly (vinylidene fluoride–trifluoroethylene–chlorotrifluoroethylene) terpolymers. Macromolecules 2015, 48, 2731–2739. [Google Scholar] [CrossRef]
- Xia, W.; Xu, Z.; Zhang, Q.; Zhang, Z.; Chen, Y. Dependence of dielectric, ferroelectric, and piezoelectric properties on crystalline properties of P(VDF-TrFE) copolymers. J. Polym. Sci. Part B Polym. Phys. 2012, 50, 1271–1276. [Google Scholar] [CrossRef]
- Wang, J.L.; Liu, B.L.; Zhao, X.L.; Tian, B.B.; Zou, Y.H.; Sun, S.; Shen, H.; Sun, J.L.; Meng, X.J.; Chu, J.H. Transition of the polarization switching from extrinsic to intrinsic in the ultrathin polyvinylidene fluoride homopolymer films. Appl. Phys. Lett. 2014, 104, 182907. [Google Scholar] [CrossRef]
- Ieda, M. Dielectric breakdown process of polymers. IEEE Trans. Electr. Insul. 1980, 3, 206–224. [Google Scholar] [CrossRef]
- Dissado, L.A.; Fothergill, J.C.; Wolfe, S.V.; Hill, R.M. Weibull statistics in dielectric breakdown; theoretical basis, applications and implications. IEEE Trans. Electr. Insul. 1984, 3, 227–233. [Google Scholar] [CrossRef]
- Zakrevskii, V.A.; Sudar, N.T. Injection of holes into polymers from metal electrodes in strong electric fields. Fiz. Tverd. Tela 1992, 34, 3228–3232. (In Russian) [Google Scholar]
- Zakrevskii, V.A.; Sudar’, N.T. Electrical breakdown of thin polymer films. Phys. Solid State 2005, 47, 961–967. [Google Scholar] [CrossRef]
- Averkiev, N.S.; Zakrevskiĭ, V.A.; Rozhanskiĭ, I.V.; Sudar’, N.T. Injection of holes into organic molecular solids. Phys. Solid State 2009, 51, 910–916. [Google Scholar] [CrossRef]
- Martins, P.; Lopes, A.C.; Lanceros-Mendez, S. Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683–706. [Google Scholar] [CrossRef]
- Kochervinskii, V.V.; Malyshkina, I.A.; Kiselev, D.A.; Ilina, T.S.; Kozlova, N.V.; Shmakova, N.A.; Korlyukov, A.A.; Gradova, M.A.; Bedin, S.A. The effect of crystal polymorphism of ferroelectric copolymer vinylidene fluoride-hexafluoropropylene on its high-voltage polarization. J. Appl. Polym. Sci. 2020, 137, 49235. [Google Scholar] [CrossRef]
- Dechant, I.; Danz, R.; Kimmer, V.; Schmolke, R. Infrokrasnaya Spectroskopiya Polimerov (Infrared Spectroscopy of Polymers); Oleinik, E.F., Ed.; Khimiya: Moscow, Russia, 1976. (In Russian) [Google Scholar]
- Tarutina, L.I. Absorption bands of CH2 groups in spectra of copolymers containing fluorine atoms. J. Appl. Spectrosc. 1968, 8, 396–398. [Google Scholar] [CrossRef]
- Pender, L.F.; Wintle, H.J. Electrical 1/f noise in insulating polymers. J. Appl. Phys. 1979, 50, 361–368. [Google Scholar] [CrossRef]
- Shur, V.Y.; Kozhevnikov, V.L.; Pelegov, D.V.; Nikolaeva, E.V.; Shishkin, E.I. Barkhausen jumps in the motion of a single ferroelectric domain wall. Phys. Solid State 2001, 43, 1128–1131. [Google Scholar] [CrossRef]
- Zhukov, R.N.; Kiselev, D.A.; Malinkovich, M.D.; Parkhomenko, Y.N.; Vygovskaya, E.A.; Toropova, O.V. Propagation of polarization of ferroelectric grains in electrically isolated lithium niobate films. Russ. Microelectron. 2012, 41, 459–463. [Google Scholar] [CrossRef]
Solvent | lhkl, nm | lp, nm | χp | ||
---|---|---|---|---|---|
l100 | l020 | l110 | |||
MEK | 4.1 | 23.0 | 12.2 | 5.1 | 0.23 |
THF | 3.3 | 1.9 | 6.3 | 2.2 | 0.32 |
Solvent | ||||
---|---|---|---|---|
MEK | 0.81 | 0.25 | 1.0 | 7.10 |
THF | 0.65 | 0.1 | 0.5 | 9.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kochervinskii, V.V.; Buryanskaya, E.L.; Osipkov, A.S.; Makeev, M.O.; Kiselev, D.A.; Gradova, M.A.; Gradov, O.V.; Lokshin, B.V.; Korlyukov, A.A. The Effect of Electric Aging on Vinylidene Fluoride Copolymers for Ferroelectric Memory. Nanomaterials 2024, 14, 1002. https://doi.org/10.3390/nano14121002
Kochervinskii VV, Buryanskaya EL, Osipkov AS, Makeev MO, Kiselev DA, Gradova MA, Gradov OV, Lokshin BV, Korlyukov AA. The Effect of Electric Aging on Vinylidene Fluoride Copolymers for Ferroelectric Memory. Nanomaterials. 2024; 14(12):1002. https://doi.org/10.3390/nano14121002
Chicago/Turabian StyleKochervinskii, Valentin V., Evgeniya L. Buryanskaya, Aleksey S. Osipkov, Mstislav O. Makeev, Dmitry A. Kiselev, Margarita A. Gradova, Oleg V. Gradov, Boris V. Lokshin, and Alexandr A. Korlyukov. 2024. "The Effect of Electric Aging on Vinylidene Fluoride Copolymers for Ferroelectric Memory" Nanomaterials 14, no. 12: 1002. https://doi.org/10.3390/nano14121002
APA StyleKochervinskii, V. V., Buryanskaya, E. L., Osipkov, A. S., Makeev, M. O., Kiselev, D. A., Gradova, M. A., Gradov, O. V., Lokshin, B. V., & Korlyukov, A. A. (2024). The Effect of Electric Aging on Vinylidene Fluoride Copolymers for Ferroelectric Memory. Nanomaterials, 14(12), 1002. https://doi.org/10.3390/nano14121002