Synthesis and Optical Properties of a Novel Hybrid Nanosystem Based on Covalently Modified nSiO2 Nanoparticles with a Curcuminoid Molecule
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments
2.3. Synthesis of Curcuminoids
2.4. Silanization Reaction of nSiO2 Nanoparticles with 3-Aminopropyltriethoxysilane
2.5. Quantification of Amino Group
2.6. Formation of Amide Bond to Prepare nSiO2-NHCO-CCM Systems
2.7. Ab Initio Calculations
2.8. Multilinear Regression Analysis
3. Results and Discussion
3.1. Chemistry of Curcuminoid Molecules
3.2. Chemistry of Nanoparticles
3.3. UV–Vis Absorption Properties
3.4. Fluorescence Properties
3.5. Solvatochromic Effect
3.6. Nanosensor Performance for Detecting Organic Liquids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amalraj, A.; Pius, A.; Gopi, S.; Gopi, S. Biological Activities of Curcuminoids, Other Biomolecules from Turmeric and Their Derivatives—A Review. J. Tradit. Complement. Med. 2017, 7, 205–233. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Kar, S.K.; Mukherjee, S.; Kar, S.K. Curcuminoids: The Novel Molecules of Nature. In Herbs and Spices—New Processing Technologies; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, M.; Du, Z.-Y.; Zheng, X.; Li, D.-L.; Zhou, R.-P. Use of Curcumin in Diagnosis, Prevention, and Treatment of Alzheimer’s Disease. Neural Regen. Res. 2018, 13, 742–752. [Google Scholar] [CrossRef] [PubMed]
- Rahimzadeh, M.; Sadeghizadeh, M.; Najafi, F.; Brahatheeswaran, D.; Mathew, A.; Girija Aswathy, R.; Sofyan, N.; Situmorang, F.W.; Ridhova, A. Visible Light Absorption and Photosensitizing Characteristics of Natural Yellow 3 Extracted from Curcuma Longa L. for Dye-Sensitized Solar Cell. IOP Conf. Ser. Earth Environ. Sci. 2018, 105, 012073. [Google Scholar] [CrossRef]
- Suresh, S.; Kandasamy, M.; Kumar, S.K.; Murugesan, S. Photovoltaic Performance of Curcumin as Sensitizer in a Solid-State Solar Cell. Optik 2015, 126, 3366–3370. [Google Scholar] [CrossRef]
- Khorasani, M.Y.; Langari, H.; Sany, S.B.T.; Rezayi, M.; Sahebkar, A. The Role of Curcumin and Its Derivatives in Sensory Applications. Mater. Sci. Eng. C 2019, 103, 109792. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tu, L.; Lu, L.; Li, Y.; Song, L.; Qi, Q.; Song, H.; Li, Z.; Huang, W. Screening and Application of Boron Difluoride Complexes of Curcumin as Colorimetric and Ratiometric Fluorescent Probes for Bisulfite. Anal. Methods 2020, 12, 1514–1521. [Google Scholar] [CrossRef]
- Li, Z.; Yan, J.; Yin, Y.; Zhang, Z.; Wang, Z.; Xu, D.; Sun, X. A Fluorescent Chemosensor for Al3+ Based on C=O Isomerization Derivated from Curcumin. Chin. J. Chem. 2016, 34, 657–661. [Google Scholar] [CrossRef]
- Nardo, L.; Maspero, A.; Selva, M.; Bondani, M.; Palmisano, G.; Ferrari, E.; Saladini, M. Excited-State Dynamics of Bis-Dehydroxycurcumin Carboxylic Acid, a Water-Soluble Derivative of the Photosensitizer Curcumin. J. Phys. Chem. A 2012, 116, 9321–9330. [Google Scholar] [CrossRef] [PubMed]
- Urošević, M.; Nikolić, L.; Gajić, I.; Nikolić, V.; Dinić, A.; Miljković, V. Curcumin: Biological Activities and Modern Pharmaceutical Forms. Antibiotics 2022, 11, 135. [Google Scholar] [CrossRef]
- Pucci, D.; Crispini, A.; Mendiguchía, B.S.; Pirillo, S.; Ghedini, M.; Morelli, S.; De Bartolo, L. Improving the Bioactivity of Zn(II)-Curcumin Based Complexes. Dalton Trans. 2013, 42, 9679–9687. [Google Scholar] [CrossRef]
- Mari, M.; Carrozza, D.; Malavasi, G.; Venturi, E.; Avino, G.; Capponi, P.C.; Iori, M.; Rubagotti, S.; Belluti, S.; Asti, M.; et al. Curcumin-Based β-Diketo Ligands for Ga3+: Thermodynamic Investigation of Potential Metal-Based Drugs. Pharmaceuticals 2022, 15, 854. [Google Scholar] [CrossRef] [PubMed]
- Tahay, P.; Parsa, Z.; Zamani, P.; Safari, N. A Structural and Optical Study of Curcumin and Curcumin Analogs. J. Iran. Chem. Soc. 2022, 19, 3177–3188. [Google Scholar] [CrossRef]
- Wanninger, S.; Lorenz, V.; Subhan, A.; Edelmann, F.T. Metal Complexes of Curcumin—Synthetic Strategies, Structures and Medicinal Applications. Chem. Soc. Rev. 2015, 44, 4986–5002. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, B.; Sen Sarma, N. Curcumin-Cysteine and Curcumin-Tryptophan Conjugate as Fluorescence Turn on Sensors for Picric Acid in Aqueous Media. ACS Appl. Mater. Interfaces 2015, 7, 11195–11202. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Wang, J.; Si, G.; Wang, M.; Xue, X.; Wu, B.; Zhou, S. A Novel Highly Selective Chemosensor Based on Curcumin for Detection of Cu2+ and Its Application for Bioimaging. Sens. Actuators B Chem. 2016, 230, 684–689. [Google Scholar] [CrossRef]
- Dodangeh, M.; Tang, R.C.; Gharanjig, K. Improving the Photostability of Curcumin Using Functional Star-Shaped Polyamidoamine Dendrimer: Application on PET. Mater. Today Commun. 2019, 21, 100620. [Google Scholar] [CrossRef]
- Subramani, P.A.; Narala, V.R. Challenges of Curcumin Bioavailability: Novel Aerosol Remedies. Nat. Prod. Commun. 2013, 8, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh, K.; Buccarello, L.; Dragotto, J.; Mohammadi, A.; Corbo, M.; Feligioni, M. Obstacles against the Marketing of Curcumin as a Drug. Int. J. Mol. Sci. 2020, 21, 6619. [Google Scholar] [CrossRef] [PubMed]
- Massaro, M.; Poma, P.; Colletti, C.G.; Barattucci, A.; Bonaccorsi, P.M.; Lazzara, G.; Nicotra, G.; Parisi, F.; Salerno, T.M.G.; Spinella, C.; et al. Chemical and Biological Evaluation of Cross-Linked Halloysite-Curcumin Derivatives. Appl. Clay Sci. 2020, 184, 105400. [Google Scholar] [CrossRef]
- Incorporating Curcumin Grafted Cellulose Nanofiber into Chitosan Films with Strong and High UV Barrier Properties—American Chemical Society. Available online: https://acs.digitellinc.com/sessions/3911/view (accessed on 11 January 2024).
- Shahzadi, I.; Islam, M.; Saeed, H.; Haider, A.; Shahzadi, A.; Rathore, H.A.; Ul-Hamid, A.; Abd-Rabboh, H.S.M.; Ikram, M. Synthesis of Curcuma Longa Doped Cellulose Grafted Hydrogel for Catalysis, Bactericidial and Insilico Molecular Docking Analysis. Int. J. Biol. Macromol. 2023, 253, 126827. [Google Scholar] [CrossRef]
- Gangwar, R.K.; Tomar, G.B.; Dhumale, V.A.; Zinjarde, S.; Sharma, R.B.; Datar, S. Curcumin Conjugated Silica Nanoparticles for Improving Bioavailability and Its Anticancer Applications. J. Agric. Food Chem. 2013, 61, 9632–9637. [Google Scholar] [CrossRef] [PubMed]
- Dodangeh, M.; Gharanjig, K.; Tang, R.C.; Grabchev, I. Functionalization of PAMAM Dendrimers with Curcumin: Synthesis, Characterization, Fluorescent Improvement and Application on PET Polymer. Dye. Pigment. 2020, 174, 108081. [Google Scholar] [CrossRef]
- Xu, G.; Wang, J.; Si, G.; Wang, M.; Cheng, H.; Chen, B.; Zhou, S. Preparation, Photoluminescence Properties and Application for in Vivo Tumor Imaging of Curcumin Derivative-Functionalized Graphene Oxide Composite. Dye. Pigment. 2017, 141, 470–478. [Google Scholar] [CrossRef]
- Khopde, S.M.; Priyadarsini, K.I.; Palit, D.K.; Mukherjee, T. Effect of Solvent on the Excited-State Photophysical Properties of Curcumin¶. Photochem. Photobiol. 2000, 72, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Chignell, C.F.; Bilskj, P.; Reszka, K.J.; Motten, A.G.; Sik, R.H.; Dahl, T.A. Spectral and photochemical properties of curcumin. Photochem. Photobiol. 1994, 59, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; Choi, W.K.; Jung, C.H.; Kim, S.B. The Surface Modification and Characterization of SiO2 Nanoparticles for Higher Foam Stability. Sci. Rep. 2020, 10, 19399. [Google Scholar] [CrossRef]
- Cabrera, P.; Jara-Guajardo, P.; Oyarzún, M.P.; Parra-Muñoz, N.; Campos, A.; Soler, M.; Álvarez, A.; Morales-Zavala, F.; Araya, E.; Minniti, A.N.; et al. Surface Enhanced Fluorescence Effect Improves the in Vivo Detection of Amyloid Aggregates. Nanomedicine 2022, 44, 102569. [Google Scholar] [CrossRef] [PubMed]
- Karnati, S.R.; Oldham, D.; Fini, E.H.; Zhang, L. Surface Functionalization of Silica Nanoparticles to Enhance Aging Resistance of Asphalt Binder. Constr. Build. Mater. 2019, 211, 1065–1072. [Google Scholar] [CrossRef]
- Cueto-Díaz, E.J.; Castro-Muñiz, A.; Suárez-García, F.; Gálvez-Martínez, S.; Torquemada-Vico, M.C.; Valles-González, M.P.; Mateo-Martí, E. Aptes-Based Silica Nanoparticles as a Potential Modifier for the Selective Sequestration of CO2 Gas Molecules. Nanomaterials 2021, 11, 2893. [Google Scholar] [CrossRef]
- Mohammadkhani, L.; Heravi, M.M. Oxalyl Chloride: A Versatile Reagent in Organic Transformations. ChemistrySelect 2019, 4, 6309–6337. [Google Scholar] [CrossRef]
- Neese, F. Software Update: The ORCA Program System—Version 5.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Staroverov, V.N.; Scuseria, G.E.; Tao, J.; Perdew, J.P. Comparative Assessment of a New Nonempirical Density Functional: Molecules and Hydrogen-Bonded Complexes. J. Chem. Phys. 2003, 119, 12129–12137. [Google Scholar] [CrossRef]
- Tao, J.; Perdew, J.P.; Staroverov, V.N.; Scuseria, G.E. Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett. 2003, 91, 146401. [Google Scholar] [CrossRef] [PubMed]
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef] [PubMed]
- Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102, 1995–2001. [Google Scholar] [CrossRef]
- Kamlet, M.J.; Abboud, J.L.M.; Abraham, M.H.; Taft, R.W. Linear Solvation Energy Relationships. 23. A Comprehensive Collection of the Solvatochromic Parameters, π, α, and β, and Some Methods for Simplifying the Generalized Solvatochromic Equation. J. Org. Chem. 1983, 48, 2877–2887. [Google Scholar] [CrossRef]
- Alimmari, A.; Mijin, D.; Vukićević, R.; Božić, B.; Valentić, N.; Vitnik, V.; Vitnik, Ž.; Ušćumlić, G. Synthesis, Structure and Solvatochromic Properties of Some Novel 5-Arylazo-6-Hydroxy-4-Phenyl-3-Cyano-2-Pyridone Dyes. Chem. Cent. J. 2012, 6, 71. [Google Scholar] [CrossRef] [PubMed]
- Catalán, J.; López, V.; Pérez, P.; Martin-Villamil, R.; Rodríguez, J. -G Progress towards a Generalized Solvent Polarity Scale: The Solvatochromism of 2-(Dimethylamino)-7-Nitrofluorene and Its Homomorph 2-Fluoro-7-Nitrofluorene. Liebigs Ann. 1995, 1995, 241–252. [Google Scholar] [CrossRef]
- Catalán, J. Toward a Generalized Treatment of the Solvent Effect Based on Four Empirical Scales: Dipolarity (SdP, a New Scale), Polarizability (SP), Acidity (SA), and Basicity (SB) of the Medium. J. Phys. Chem. B 2009, 113, 5951–5960. [Google Scholar] [CrossRef]
- Curitol, M.; Ragas, X.; Nonell, S.; Pizarro, N.; Encinas, M.V.; Rojas, P.; Zanocco, R.P.; Lemp, E.; Günther, G.; Zanocco, A.L. Solvent and Media Effects on the Photophysics of Naphthoxazole Derivatives. Photochem. Photobiol. 2013, 89, 1327–1334. [Google Scholar] [CrossRef]
- Pinto, B.P.; de Santa Maria, L.C.; Sena, M.E. Sulfonated Poly(Ether Imide): A Versatile Route to Prepare Functionalized Polymers by Homogenous Sulfonation. Mater. Lett. 2007, 61, 2540–2543. [Google Scholar] [CrossRef]
- Suresha, P.R.; Badiger, M.V. Cationic Chitosan Graft Flocculants: Synthesis, Characterization and Applications in Kaolin Separation. Mater. Today Proc. 2022. [Google Scholar] [CrossRef]
- Ren, Y.; Zhou, H.; Lu, J.; Huang, S.; Zhu, H.; Li, L. Theoretical and Experimental Optimization of the Graft Density of Functionalized Anti-Biofouling Surfaces by Cationic Brushes. Membranes 2020, 10, 431. [Google Scholar] [CrossRef] [PubMed]
- Mbakaan, C.; Ahemen, I.; Amah, A.N.; Onojah, A.D.; Koao, L. White-Light-Emitting Dy3+-Doped Amorphous SiO2 Nanophosphors Derived from Rice Husk. Appl. Phys. A Mater. Sci. Process 2018, 124, 741. [Google Scholar] [CrossRef]
- Sayyar, Z.; Malmiri, H.J. Photocatalytic and Antibacterial Activities Study of Prepared Self-Cleaning Nanostructure Surfaces Using Synthesized and Coated ZnO Nanoparticles with Curcumin Nanodispersion. Z. Krist. Cryst. Mater. 2019, 234, 307–328. [Google Scholar] [CrossRef]
- Liu, L.; Sun, Y.; Wei, S.; Hu, X.; Zhao, Y.; Fan, J. Solvent Effect on the Absorption and Fluorescence of Ergone: Determination of Ground and Excited State Dipole Moments. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 86, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Lyu, H.; Wang, D.; Cai, L.; Wang, D.J.; Li, X.M. Synthesis, Photophysical and Solvatochromic Properties of Diacetoxyboron Complexes with Curcumin Derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 220, 117126. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Ji, W.; Zhang, Y.; Du, L.; Wang, S. A Competitive Fluorescence Quenching-Based Immunoassay for Bisphenol A Employing Functionalized Silica Nanoparticles and Nanogold. RSC Adv. 2016, 6, 38950–38956. [Google Scholar] [CrossRef]
- Balakrishnan, V.; Ab Wab, H.A.; Abdul Razak, K.; Shamsuddin, S. In Vitro Evaluation of Cytotoxicity of Colloidal Amorphous Silica Nanoparticles Designed for Drug Delivery on Human Cell Lines. J. Nanomater. 2013, 2013, 729306. [Google Scholar] [CrossRef]
- Welc, R.; Luchowski, R.; Kłosok, K.; Gruszecki, W.I.; Nawrocka, A. How Do Phenolic Acids Change the Secondary and Tertiary Structure of Gliadin? Studies with an Application of Spectroscopic Techniques. Int. J. Mol. Sci. 2022, 23, 6053. [Google Scholar] [CrossRef]
- Zhang, Q.; Lv, Q.; Zhang, D.; Jiang, W.; Zhang, H.; Zhang, W. Influence of Hydrogen Bonding on the Photophysical Properties of Diethylamino Hydroxybenzoyl Hexyl Benzoate. Processes 2023, 11, 2077. [Google Scholar] [CrossRef]
- Magde, D.; Wong, R.; Seybold, P.G. Fluorescence Quantum Yields and Their Relation to Lifetimes of Rhodamine 6G and Fluorescein in Nine Solvents: Improved Absolute Standards for Quantum Yields¶. Photochem. Photobiol. 2002, 75, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Fery-Forgues, S.; Lavabre, D. Are Fluorescence Quantum Yields So Tricky to Measure? A Demonstration Using Familiar Stationery Products. J. Chem. Educ. 1999, 76, 1260–1264. [Google Scholar] [CrossRef]
- Salinas, C.; Amé, M.V.; Bracamonte, A.G. Synthetic Non-Classical Luminescence Generation by Enhanced Silica Nanophotonics Based on Nano-Bio-FRET. RSC Adv. 2020, 10, 20620–20637. [Google Scholar] [CrossRef] [PubMed]
- De Melo, C.E.A.; Nandi, L.G.; Domínguez, M.; Rezende, M.C.; Machado, V.G. Solvatochromic Behavior of Dyes with Dimethylamino Electron-Donor and Nitro Electron-Acceptor Groups in Their Molecular Structure. J. Phys. Org. Chem. 2015, 28, 250–260. [Google Scholar] [CrossRef]
- Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry: Fourth Edition. Solvents and Solvent Effects in Organic Chemistry, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Lam, N.L.; Smith, K.R.; Gauthier, A.; Bates, M.N. Kerosene: A review of household uses and their hazards in low- and middle-income countries. J. Toxicol. Env. Health B Crit. Rev. 2012, 15, 396. [Google Scholar] [CrossRef]
Absorbance at 579 nm | Amino Group Concentration (μmol/g Nanoparticle) | Degree of Functionalization of Curcuminoid Molecule (μmol/g Nanoparticle) | Z Potential (mV) | |
---|---|---|---|---|
nSiO2-NH2 | 0.5790 ± 0.0361 | 238 ± 17.2 | - | −27.5 |
nSiO2-NHCO-CCM-10 | 0.1385 ± 0.0153 | 121 ± 12.1 | 118 | 37.8 |
nSiO2-NHCO-CCM-30 | 0.0022 ± 0.0014 | 17 ± 5.8 | 222 | 40.9 |
nSiO2-NHCO-CCM-50 | 0.0045 ± 0.0009 | 29 ± 5.9 | 210 | 41.3 |
Compound | λabs (nm) | Log(εmax) | λem (nm) | τ (ns) | Φem |
---|---|---|---|---|---|
1 | 488 | 4.85 | 565 | 1.45 | 0.69 a |
2 | 500 | 4.74 | 573 | 1.32 | 0.63 a |
3 | 363 | 4.74 | 441 | 0.75 | - |
nSiO2-NHCO-CCM | 472 | - | 538 | 0.13 | 0.017 b |
Compounds | 1 | Standard Error | t-Statistic | P(2-tail) |
---|---|---|---|---|
υo | 20,385 | 223 | 91 | <0.0001 |
s | −3170 | 417 | −8 | <0.0001 |
a | −767 | 447 | −2 | 0.12019 |
b | −1758 | 467 | −3 | 0.004 |
Coefficient of multiple correlation = 0.969 | F = 46 | N = 13 | ||
Compounds | 2 | Standard Error | t-Statistic | P(2-tail) |
υo | 19,773 | 225 | 88 | <0.0001 |
s | −2753 | 420 | −7 | <0.0001 |
a | −400 | 450 | −1 | 0.3976 |
b | −1825 | 470 | −4 | 0.0037 |
Coefficient of multiple correlation = 0.958 | F = 33 | N = 13 | ||
Compounds | 3 | Standard Error | t-Statistic | P(2-tail) |
υo | 25,453 | 265 | 96 | <0.0001 |
s | −3369 | 495 | −7 | <0.0001 |
a | −55 | 530 | −0.1 | 0.9199 |
b | −1672 | 554 | −3 | 0.0145 |
Coefficient of multiple correlation = 0.951 | F = 28 | N = 13 | ||
Compounds | nSiO2-NHCO-CCM | Standard Error | t-Statistic | P(2-tail) |
υo | 1925 | 82 | 234 | <0.0001 |
s | −810 | 53 | −5 | <0.0001 |
a | 92 | 16 | −0.6 | 0.5892 |
b | 418 | 17 | −2 | 0.0380 |
Coefficient of multiple correlation = 0.910 | F = 14 | N = 13 |
Compounds | 1 | Standard Error | t-Statistic | P(2-tail) |
---|---|---|---|---|
υo | 22,754 | 862 | 26 | <0.0001 |
a | −3722 | 818 | −5 | 0.0018 |
b | −242 | 444 | −0.5 | 0.6009 |
c | −2826 | 302 | −9 | <0.0001 |
d | −3716 | 123 | −3 | 0.0016 |
Coefficient of multiple correlation = 0.985 | F = 65 | N = 13 | ||
Compounds | 2 | Standard Error | t-Statistic | P(2-tail) |
υo | 21,456 | 756 | 28 | <0.0001 |
a | −3804 | 717 | −5 | <0.0001 |
b | 322 | 389 | −0.8 | 0.4321 |
c | −2604 | 265 | 10 | <0.0001 |
d | −2719 | 107 | −2 | 0.0356 |
Coefficient of multiple correlation = 0.958 | F = 63 | N = 13 | ||
Compounds | 3 | Standard Error | t-Statistic | P(2-tail) |
υo | 26,758 | 1090 | 24 | <0.0001 |
a | −2801 | 1034 | −2.7 | 0.0267 |
b | 630 | 561 | −1.1 | 0.2934 |
c | −3185 | 382 | −8 | <0.0001 |
d | −2225 | 155 | −1.4 | 0.0190 |
Coefficient of multiple correlation = 0.973 | F = 35 | N = 13 | ||
Compounds | nSiO2-NHCO-CCM | Standard Error | t-Statistic | P(2-tail) |
υo | 20,434 | 437 | 47 | <0.0001 |
a | 1063 | 415 | −2.5 | 0.0336 |
b | −243 | 225 | −1.1 | 0.3114 |
c | −416 | 15 | −2.7 | 0.0266 |
d | −1797 | 624 | −2.9 | 0.0205 |
Coefficient of multiple correlation = 0.912 | F = 10 | N = 13 |
Compounds | Pπ* (%) | Pα (%) | Pβ (%) |
---|---|---|---|
1 | 55.7 | 13.5 | 30.9 |
2 | 55.3 | 8.0 | 36.7 |
3 | 66.1 | 1.1 | 32.8 |
nSiO2-NHCO-CCM | 61.4 | 7.0 | 31.7 |
Compounds | PSA | PSB | PSdP | PSP |
---|---|---|---|---|
1 | 35.4 | 2.3 | 26.9 | 35.4 |
2 | 40.3 | 3.4 | 27.6 | 28.8 |
3 | 31.7 | 7.1 | 36.0 | 25.2 |
nSiO2-NHCO-CCM | 30.2 | 6.9 | 11.8 | 51.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parra-Muñoz, N.; López-Monsalves, V.; Espinoza-González, R.; Aravena, D.; Pizarro, N.; Soler, M. Synthesis and Optical Properties of a Novel Hybrid Nanosystem Based on Covalently Modified nSiO2 Nanoparticles with a Curcuminoid Molecule. Nanomaterials 2024, 14, 1022. https://doi.org/10.3390/nano14121022
Parra-Muñoz N, López-Monsalves V, Espinoza-González R, Aravena D, Pizarro N, Soler M. Synthesis and Optical Properties of a Novel Hybrid Nanosystem Based on Covalently Modified nSiO2 Nanoparticles with a Curcuminoid Molecule. Nanomaterials. 2024; 14(12):1022. https://doi.org/10.3390/nano14121022
Chicago/Turabian StyleParra-Muñoz, Nicole, Valentina López-Monsalves, Rodrigo Espinoza-González, Daniel Aravena, Nancy Pizarro, and Monica Soler. 2024. "Synthesis and Optical Properties of a Novel Hybrid Nanosystem Based on Covalently Modified nSiO2 Nanoparticles with a Curcuminoid Molecule" Nanomaterials 14, no. 12: 1022. https://doi.org/10.3390/nano14121022
APA StyleParra-Muñoz, N., López-Monsalves, V., Espinoza-González, R., Aravena, D., Pizarro, N., & Soler, M. (2024). Synthesis and Optical Properties of a Novel Hybrid Nanosystem Based on Covalently Modified nSiO2 Nanoparticles with a Curcuminoid Molecule. Nanomaterials, 14(12), 1022. https://doi.org/10.3390/nano14121022