Evolution of the Surface Wettability of Vertically Oriented Multilayer Graphene Sheets Deposited by Plasma Technology
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Wettability of Cobalt Samples
3.2. Wettability of Nanocarbon Deposits on Cobalt Substrates
3.3. Wettability of Samples with Carbon Deposits Activated with Oxygen Plasma
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Z.; Wang, J.; Onyshchenko, I.; Wang, Y.; Leys, C.; Nikiforov, A.; Lei, W. Efficient and green synthesis of SiOC nanoparticles at near-ambient conditions by liquid-phase plasma. ASC Sustain. Chem. Eng. 2021, 9, 7728–7736. [Google Scholar] [CrossRef]
- Bai, W.; Pakdel, E.; Wang, Q.; Tang, B.; Wang, J.; Chen, Z.; Zhang, Y.; Hurren, C.; Wang, X. Synergetic adsorption-photocatalysis of titania-silica photocatalysts and their immobilization on PEEK nonwoven filter for VOC removal. J. Enviromental Chem. Eng. 2022, 10, 108920. [Google Scholar] [CrossRef]
- Kadry, G. Immobilization of Ag-NPs onto cellulose-containing fabrics using O2-plasma. J. Text. Inst. 2023, 1–12. [Google Scholar] [CrossRef]
- Chen, X.; Ghosh, S.; Buckley, D.T.; Sankaran, R.M.; Hogan, C.J.J. Characterization of the state of nanoparticle aggregation in non-equilibrium plasma synthesis systems. J. Phys. D Appl. Phys. 2018, 51, 335203. [Google Scholar] [CrossRef]
- Sawyer, W.J.; Hart, A.J. Process intensification of microplasma nanoparticle synthesis enabled by gas flow design. Chem. Eng. J. 2023, 477, 147111. [Google Scholar] [CrossRef]
- Khajavi, M.Z.; Nikiforov, A.; Nilkar, M.; Devlieghere, F.; Ragaert, P.; De Geyter, N. Degradable plasma-polymerized poly(ethylene glycol-like coating as a matrix for food-packaging applications. Nanomaterials 2023, 13, 2774. [Google Scholar] [CrossRef] [PubMed]
- St’ahel, P.; Mazankova, V.; Prokeš, L.; Buriškova, V.; Stupavska, M.; Lehocky, M.; Pištekova, H.; Ozaltin, K.; Trunec, D. Comparison of plasma-polymerized thin films depostied from 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline: I Film properties. Int. J. Mol. Sci. 2023, 24, 17455. [Google Scholar] [CrossRef] [PubMed]
- Šourkova, H.J.; Weberova, Z.; Anton, J.; Špatenka, P. Wettability and adhesion of polyethylene powder treated with non-equilibrium various gaseous plasma in semi-industrial equipment. Materials 2022, 15, 686. [Google Scholar] [CrossRef] [PubMed]
- Vesel, A.; Primc, G.; Zaplotnik, R.; Mozetič, M. Applications of highly non-equilibrium low-pressure oxygen plasma for treatment of polymers and polymer composites on an industrial scale. Plasma Phys. Control. Fusion 2020, 62, 024008. [Google Scholar] [CrossRef]
- Verma, J.; Lal, S.; Van Veen, H.A.; Van Noorden, C.J.F. A novel strategy for synthesis of gold nanoparticles self assemblies. Curr. Nanosci. 2014, 10, 670–675. [Google Scholar] [CrossRef]
- Mantzaris, N.V.; Gogolides, E.; Boudouvis, A.G.; Rhallabi, A.; Turban, G. Surface and plasma simulation of deposition processes: CH4 plasmas for the growth of diamondlike carbon. J. Appl. Phys. 1996, 79, 3718–3729. [Google Scholar] [CrossRef]
- Chang, C.-C.; Chang, Y.-H.; Hwang, K.-C.; Jou, J.-H.; Yang, A.C.-M. One-step Fabrication of π-Conjugated Polymer Thin Films from Naphthalenes via Plasma Polymerization for Efficient Optoelectronic Devices: White Polymer Light-emitting Diodes. Plasma Process. Polym. 2011, 8, 215–223. [Google Scholar] [CrossRef]
- Baudrillart, B.; Benedic, F.; Melouani, A.S.; Oliviera, F.J.; Silva, R.F.; Achard, J. Low-temperature deposition of nanocrystalline diamond films on silicon nitride substrates using distributed antenna array PECVD system. Phys. Status Solidi A 2016, 213, 2575–2581. [Google Scholar] [CrossRef]
- Zanini, S.; Lehocky, M.; Lopez-Garcia, J.; Riccardi, C. Plasma polymerization of 2-isopropenyl-2-oxazoline: Improvement of the coating stability by co-polymerization with 1-octene. Thin Solid Films 2019, 677, 55–61. [Google Scholar] [CrossRef]
- Zhang, L.; Qing, X.; Chen, Z.; Wang, J.; Yang, G.; Yang, G.; Qian, Y.; Liu, D.; Chen, C.; Wang, L.; et al. All Pseudocapacitive Nitrogen-Doped Reduced Graphene Oxide and Polyaniline Nanowire Network for High-Performance Flexible On-Chip Energy Storage. ACS Appl. Energy Mater. 2020, 3, 6845–6852. [Google Scholar] [CrossRef]
- Zhai, Z.; Zhang, L.; Du, T.; Ren, B.; Xu, Y.; Wang, S.; Miao, J.; Liu, Z. A review of carbon materials for supercapacitors. Mater. Des. 2022, 221, 111017. [Google Scholar] [CrossRef]
- Czagany, M.; Hompoth, S.; Keshri, A.K.; Pandit, N.; Galambos, I.; Gacsi, Z.; Baumli, P. Supercapacitors: An efficient way for energy storage application. Materials 2024, 17, 702. [Google Scholar] [CrossRef] [PubMed]
- Heo, H.; Yun, K.; An, G.-H. Pattern anodes with an activated carbon nanotube protective layer for zinc-ion hybrid capacitors. J. Alloys Compd. 2023, 965, 171229. [Google Scholar] [CrossRef]
- Glogic, E.; Kamali, A.K.; Keppetipola, N.M.; Alonge, B.; Kumara, G.R.A.; Sonnemann, G.; Toupance, T.; Cojocaru, L. Life cycle assessment of supercapacitor electrodes based on activated carbon from coconut shells. ACS Sustain. Chem. Eng. 2022, 10, 15025–15034. [Google Scholar] [CrossRef]
- Numee, P.; Sangtawesin, T.; Yilmaz, M.; Kanjana, K. Activated carbon derived from radiation-processed durian shell for energy storage application. Carbon Resour. Convers. 2024, 7, 100192. [Google Scholar] [CrossRef]
- Wu, Y.; Qiao, P.; Chong, T.; Shen, Z. Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Adv. Mater. 2002, 14, 64–67. [Google Scholar] [CrossRef]
- Hiramatsu, M.; Hori, M. Carbon Nanowalls; Springer: Heidelberg, Germany, 2010. [Google Scholar]
- Wang, J.; Zhang, H.; Zhao, Y.; Yao, L.; Zhao, M.; Xu, X.; Yan, B.; Ye, J.; Zhao, Y.; Wu, S. Scalable growth of vertically oriented graphene nanosheets with high rate by a high-flux mesoplasma chemical vapor deposition. Carbon Trends 2021, 4, 100069. [Google Scholar] [CrossRef]
- Vizireanu, S.; Constantinoiu, I.; Satulu, V.; Stoica, S.D.; Viespe, C. High-sensitivity H2 and CH4 SAW sensors with carbon nanowalls and improvement in their performance after plasma treatment. Chemosensors 2023, 11, 566. [Google Scholar] [CrossRef]
- Shavelkina, M.B.; Antonova, I.V.; Ivanov, A.V.; Nebogatikova, N.A.; Soots, R.A. Decoration of graphene in plasma jets of a DC plasma torch for 2D printing. High Energy Chem. 2023, 57, S200–S203. [Google Scholar] [CrossRef]
- Ostrovskaya, L.Y.; Ralchenko, V.G.; Bolshakov, A.P.; Saveliev, A.V.; Dzbanovsky, N.N.; Shmegera, S.V. Wettability of ultrananocrystalline diamond and graphite nanowalls films: A comparison with their single crystal analogs. J. Nanosci. Nanotechnol. 2009, 9, 3665–3671. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhang, Z.; Qiu, Y.; Wang, Z.; Mu, L.; Lu, X.; Zhu, J. Unsymmetric design of self-supported sheet electrode: Breaking the tradeoff between electrical conduction and surface wetting for fast energy storage and excellent cycling stability. Fuel 2024, 358, 130146. [Google Scholar] [CrossRef]
- Yilmaz, K.; Gürsoy, M.; Karaman, M. Environmentally Friendly and All-Dry Hydrophobic Patterning of Graphene Oxide for Fog Harvesting. ACS Omega 2024, 9, 8810–8817. [Google Scholar] [CrossRef]
- Paul, D.; Mozetič, M.; Zaplotnik, R.; Ekar, J.; Vesel, A.; Primc, G.; Đonlagič, D. Loss of Oxygen Atoms on Well-Oxidized Cobalt by Heterogeneous Surface Recombination. Materials 2023, 16, 5806. [Google Scholar] [CrossRef]
- Cvelbar, U. Removal of a thin hydrogenated carbon film by oxygen plasma treatment. Mater. Technol. 2011, 45, 179–183. [Google Scholar]
- Mozetič, M.; Vesel, A.; Kovač, J.; Zaplotnik, R.; Modic, M.; Balat-Pichelin, M. Formation and reduction of thin oxide films on a stainless steel surface upon subsequent treatments with oxygen and hydrogen plasma. Thin Solid Films 2015, 591, 186–193. [Google Scholar] [CrossRef]
- Vesel, A.; Drenik, A.; Elersic, K.; Mozetič, M.; Kovač, J.; Gyergyek, T.; Stockel, J.; Varju, J.; Panek, R.; Balat-Pichelin, M. Oxidation of Inconel 625 superalloy upon treatment with oxygen or hydrogen plasma at high temperature. Appl. Surf. Sci. 2014, 305, 674–682. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q. Role of surface roughness in the wettability, surface energy and flotation kinetics of calcite. Powder Technol. 2020, 371, 55–63. [Google Scholar] [CrossRef]
- Zulfiqar, B.; Vogel, H.; Ding, Y.; Golmohammadi, S.; Küchler, M.; Reuter, D.; Geistlinger, H. The Impact of Wettability and Surface Roughness on Fluid Displacement and Capillary Trapping in 2-D and 3-D Porous Media: 2. Combined Effect of Wettability, Surface Roughness, and Pore Space Structure on Trapping Efficiency in Sand Packs and Micromodels. Water Resour. Res. 2020, 56, e2020WR027965. [Google Scholar] [CrossRef]
- Nakae, H.; Inui, R.; Hirata, Y.; Saito, H. Effects of surface roughness on wettability. Acta Mater. 1998, 46, 2313–2318. [Google Scholar] [CrossRef]
- Mahadik, S.A.; Mahadik, S.S. Surface morphological and topographical analysis of multifunctional superhydrophobic sol-gel coatings. Ceram. Int. 2021, 47, 29475–29482. [Google Scholar] [CrossRef]
- Elinas, K.; Pujari, S.P.; Dragatogiannis, D.A.; Charitidis, C.A.; Tserepi, A.; Zuilhof, H.; Gogolides, E. Plasma Micro-Nanotextured, Scratch, Water and Hexadecane Resistant, Superhydrophobic, and Superamphiphobic Polymeric Surfaces with Perfluorinated Monolayers. ACS Appl. Mater. Interfaces 2014, 6, 6510–6524. [Google Scholar] [CrossRef] [PubMed]
- Vlachopoulou, M.-E.; Petrou, P.S.; Kakabakos, S.E.; Tserepi, A.; Beltsios, K.; Gogolides, E. Effect of surface nanostructuring of PDMS on wetting properties, hydrophobic recovery and protein adsorption. Microelectron. Eng. 2009, 86, 1321–1324. [Google Scholar] [CrossRef]
- Primc, G.; Mozetič, M. Hydrophobic Recovery of Plasma-Hydrophilized Polyethylene Terephthalate Polymers. Polymers 2022, 14, 2496. [Google Scholar] [CrossRef]
- Mortazavi, M.; Nosonovsky, M. A model for diffusion-driven hydrophobic recovery in plasma treated polymers. Appl. Surf. Sci. 2012, 258, 6876–6883. [Google Scholar] [CrossRef]
PECVD Time [s] | C | O | Co |
---|---|---|---|
0 | 56.4 | 32.3 | 11.3 |
1 | 87.7 | 6.2 | 6.1 |
3 | 96.5 | 3.5 | 0 |
5 | 98.3 | 1.7 | 0 |
10 | 99.2 | 0.8 | 0 |
30 | 99.2 | 0.8 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paul, D.; Zaplotnik, R.; Primc, G.; Vesel, A.; Mozetič, M. Evolution of the Surface Wettability of Vertically Oriented Multilayer Graphene Sheets Deposited by Plasma Technology. Nanomaterials 2024, 14, 1023. https://doi.org/10.3390/nano14121023
Paul D, Zaplotnik R, Primc G, Vesel A, Mozetič M. Evolution of the Surface Wettability of Vertically Oriented Multilayer Graphene Sheets Deposited by Plasma Technology. Nanomaterials. 2024; 14(12):1023. https://doi.org/10.3390/nano14121023
Chicago/Turabian StylePaul, Domen, Rok Zaplotnik, Gregor Primc, Alenka Vesel, and Miran Mozetič. 2024. "Evolution of the Surface Wettability of Vertically Oriented Multilayer Graphene Sheets Deposited by Plasma Technology" Nanomaterials 14, no. 12: 1023. https://doi.org/10.3390/nano14121023
APA StylePaul, D., Zaplotnik, R., Primc, G., Vesel, A., & Mozetič, M. (2024). Evolution of the Surface Wettability of Vertically Oriented Multilayer Graphene Sheets Deposited by Plasma Technology. Nanomaterials, 14(12), 1023. https://doi.org/10.3390/nano14121023