Improvement of DC Performance and RF Characteristics in GaN-Based HEMTs Using SiNx Stress-Engineering Technique
Abstract
:1. Introduction
2. Device Structure and Fabrication Process
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chung, J.W.; Hoke, W.E.; Chumbes, E.M.; Palacios, T. AlGaN/GaN HEMT with 300-GHz fmax. IEEE Electron Device Lett. 2010, 31, 195–197. [Google Scholar] [CrossRef]
- Shaobing, W.; Jianfeng, G.; Weibo, W.; Junyun, Z. W-Band MMIC PA With Ultrahigh Power Density in 100-nm AlGaN/GaN Technology. IEEE Trans. Electron Devices 2016, 63, 3882–3886. [Google Scholar] [CrossRef]
- Sheppard, S.T.; Doverspike, K.; Pribble, W.L.; Allen, S.T.; Palmour, J.W.; Kehias, L.T.; Jenkins, T.J. High-power microwave GaN/AlGaN HEMTs on semi-insulating silicon carbide substrates. IEEE Electron Device Lett. 1999, 20, 161–163. [Google Scholar] [CrossRef]
- Arulkumaran, S.; Egawa, T.; Ishikawa, H.; Jimbo, T.; Sano, Y. Surface passivation effects on AlGaN/GaN high-electron-mobility transistors with SiO2, Si3N4, and silicon oxynitride. Appl. Phys. Lett. 2004, 84, 613–615. [Google Scholar] [CrossRef]
- Liu, J.L.; Zhu, J.J.; Mi, M.H.; Zhu, Q.; Liu, S.Y.; Wang, P.F.; Zhou, Y.W.; Zhao, Z.Y.; Zhou, J.D.; Zhang, M.; et al. 8.7 W/mm output power density and 42% power-added-efficiency at 30 GHz for AlGaN/GaN HEMTs using Si-rich SiN passivation interlayer. Appl. Phys. Lett. 2022, 120, 052101. [Google Scholar] [CrossRef]
- Karouta, F.; Krämer, M.; Kwaspen, J.J.; Grzegorczyk, A.; Hageman, P.; Hoex, B.; Kessels, W.M.; Klootwijk, J.; Timmering, E.; Smit, M. Influence of the Structural and Compositional Properties of PECVD Silicon Nitride as a Passivation Layer for AlGaN HEMTs. ECS Trans. 2008, 16, 181–191. [Google Scholar] [CrossRef]
- Levinshtein, M.E.; Rumyantsev, S.L.; Gaska, R.; Yang, J.W.; Shur, M.S. AlGaN/GaN high electron mobility field effect transistors with low 1/f noise. Appl. Phys. Lett. 1998, 73, 1089–1091. [Google Scholar] [CrossRef]
- Hao, Y.; Ma, X.; Mi, M.; Yang, L.A. Research on GaN-Based RF Devices: High-Frequency Gate Structure Design, Submicrometer-Length Gate Fabrication, Suppressed SCE, Low Parasitic Resistance, Minimized Current Collapse, and Lower Gate Leakage. IEEE Microw. Mag. 2021, 22, 34–48. [Google Scholar] [CrossRef]
- Koley, G.; Tilak, V.; Eastman, L.F.; Spencer, M.G. Slow transients observed in AlGaN/GaN HFETs: Effects of SiN/sub x/passivation and UV illumination. IEEE Trans. Electron Devices 2003, 50, 886–893. [Google Scholar] [CrossRef]
- Bao, Q.; Huang, S.; Wang, X.; Wei, K.; Zheng, Y.; Li, Y.; Yang, C.; Jiang, H.; Li, J.; Hu, A. Effect of interface and bulk traps on the C–V characterization of a LPCVD-SiNx/AlGaN/GaN metal-insulator-semiconductor structure. Semicond. Sci. Technol. 2016, 31, 065014. [Google Scholar] [CrossRef]
- Wu, S.; Mi, M.; Zhang, M.; Yang, L.; Hou, B.; Ma, X.; Hao, Y. A High RF-Performance AlGaN/GaN HEMT with Ultrathin Barrier and Stressor in situ SiN. IEEE Trans. Electron Devices 2021, 68, 5553–5558. [Google Scholar] [CrossRef]
- Aubry, R.; Jacquet, J.C.; Oualli, M.; Patard, O.; Piotrowicz, S.; Chartier, E.; Michel, N.; Xuan, L.T.; Lancereau, D.; Potier, C. ICP-CVD SiN Passivation for High-Power RF InAlGaN/GaN/SiC HEMT. IEEE Electron Device Lett. 2016, 37, 629–632. [Google Scholar] [CrossRef]
- Moon, S.W.; Lee, J.; Seo, D.; Jung, S.; Choi, H.G.; Shim, H.; Yim, J.S.; Twynam, J.; Roh, S.D. High-voltage GaN-on-Si hetero-junction FETs with reduced leakage and current collapse effects using SiNx surface passivation layer deposited by low pressure CVD. Jpn. J. Appl. Phys. 2014, 53, 08NH02. [Google Scholar] [CrossRef]
- Mi, M.; Ma, X.H.; Yang, L.; Lu, Y.; Hou, B.; Zhu, J.; Zhang, M.; Zhang, H.S.; Zhu, Q.; Yang, L.A.; et al. Millimeter-Wave Power AlGaN/GaN HEMT Using Surface Plasma Treatment of Access Region. IEEE Trans. Electron Devices 2017, 64, 4875–4881. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, K.; Ma, X.H.; Hou, B.; Liu, G.G.; Zhang, Y.c.; Wang, X.H.; Zheng, Y.K.; Huang, S.; Li, Y.K. Reduced reverse gate leakage current for GaN HEMTs with 3 nm Al/40 nm SiN passivation layer. Appl. Phys. Lett. 2019, 114, 013503. [Google Scholar] [CrossRef]
- Ghani, M.T.; Armstrong, C.; Auth, M.; Bost, P.; Charvat, G.; Glass, T.; Hoffmann, K.; Johnson, C.; Kenyon, J.; Klaus, B.; et al. A 90 nm high volume manufacturing logic technology featuring novel 45 nm gate length strained silicon CMOS transistors. In Proceedings of the 2003 IEEE International Electron Devices Meeting, Washington, DC, USA, 8–10 December 2003; pp. 11.6.1–11.6.3. [Google Scholar]
- Mackenzie, K.; Johnson, D.; DeVre, M.; Westerman, R.; Reelfs, B. Stress Control of Si-based PECVD Dielectrics. In Proceedings of the 207th Electrochemical Society, Quebec City, QC, Canada, 15–20 May 2005; p. 406. [Google Scholar]
- Cheng, W.C.; Fang, T.; Lei, S.; Zhao, Y.; He, M.; Mansun, C.; Xia, G.; Zhao, F.; Yu, H. Silicon Nitride Stress Liner Impacts on the Electrical Characteristics of AlGaN/GaN HEMTs. In Proceedings of the 2019 IEEE International Conference on Electron Devices and Solid-State Circuits, Xi’an, China, 12–14 June 2019; pp. 1–3. [Google Scholar]
- Cheng, W.C.; Zeng, F.; He, M.; Wang, Q.; Chan, M.; Yu, H. Quasi-Normally-Off AlGaN/GaN HEMTs With SiNx Stress Liner and Comb Gate for Power Electronics Applications. IEEE J. Electron Devices Soc. 2020, 8, 1138–1144. [Google Scholar] [CrossRef]
- Zhang, H.; Miller, E.J.; Yu, E.T. Analysis of leakage current mechanisms in Schottky contacts to GaN and Al0.25Ga0.75N∕GaN grown by molecular-beam epitaxy. J. Appl. Phys. 2006, 99, 023703. [Google Scholar] [CrossRef]
- Turuvekere, S.; Karumuri, N.; Rahman, A.A.; Bhattacharya, A.; DasGupta, A.; DasGupta, N. Gate Leakage Mechanisms in AlGaN/GaN and AlInN/GaN HEMTs: Comparison and Modeling. IEEE Trans. Electron Devices 2013, 60, 3157–3165. [Google Scholar] [CrossRef]
- Jimenez, J.L.; Chowdhury, U. X-Band GaN FET reliability. In Proceedings of the 2008 IEEE International Reliability Physics Symposium, Phoenix, AZ, USA, 27 April–1 May 2008; pp. 429–435. [Google Scholar]
Passivation Scheme | Stress-Free SiNx Passivation | Compressive SiNx Passivation | |
---|---|---|---|
First-layer SiNx passivation | 10 nm high-frequency SiNx protective layer (tLF/20 = 0) | ||
Second-layer SiNx passivation | Thickness | 180 nm | 180 nm |
LF duty cycle | tLF/20 = 45% | tLF/20 = 95% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, C.; Wang, P.; Tang, C.; Hu, Q.; Du, F.; Jiang, Y.; Zhang, Y.; Li, M.; Xiong, Z.; Wang, X.; et al. Improvement of DC Performance and RF Characteristics in GaN-Based HEMTs Using SiNx Stress-Engineering Technique. Nanomaterials 2024, 14, 1471. https://doi.org/10.3390/nano14181471
Deng C, Wang P, Tang C, Hu Q, Du F, Jiang Y, Zhang Y, Li M, Xiong Z, Wang X, et al. Improvement of DC Performance and RF Characteristics in GaN-Based HEMTs Using SiNx Stress-Engineering Technique. Nanomaterials. 2024; 14(18):1471. https://doi.org/10.3390/nano14181471
Chicago/Turabian StyleDeng, Chenkai, Peiran Wang, Chuying Tang, Qiaoyu Hu, Fangzhou Du, Yang Jiang, Yi Zhang, Mujun Li, Zilong Xiong, Xiaohui Wang, and et al. 2024. "Improvement of DC Performance and RF Characteristics in GaN-Based HEMTs Using SiNx Stress-Engineering Technique" Nanomaterials 14, no. 18: 1471. https://doi.org/10.3390/nano14181471
APA StyleDeng, C., Wang, P., Tang, C., Hu, Q., Du, F., Jiang, Y., Zhang, Y., Li, M., Xiong, Z., Wang, X., Wen, K., Li, W., Tao, N., Wang, Q., & Yu, H. (2024). Improvement of DC Performance and RF Characteristics in GaN-Based HEMTs Using SiNx Stress-Engineering Technique. Nanomaterials, 14(18), 1471. https://doi.org/10.3390/nano14181471