Glass Surface Nanostructuring by Soft Lithography and Chemical Etching
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Nanostructured Glass
3.2. Wetting Properties
3.2.1. Experimental Results
3.2.2. Theoretical Aspects
3.3. Optical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schmidt, D.L.; Brady, R.F.; Lam, K.; Schmidt, D.C.; Chaudhury, M.K. Contact Angle Hysteresis, Adhesion, and Marine Biofouling. Langmuir 2004, 20, 2830–2836. [Google Scholar] [CrossRef]
- Dove, A.; Devaud, G.; Wang, X.; Crowder, M.; Lawitzke, A.; Haley, C. Mitigation of lunar dust adhesion by surface modification. Planet. Space Sci. 2011, 59, 1784–1790. [Google Scholar] [CrossRef]
- Varga, H.F.; Wiesner, M.R. Relationship between Atomic Force Microscopy and Centrifugation Measurements for Dust Fractions Implicated in Solar Panel Soiling. Environ. Sci. Technol. 2022, 56, 9604–9612. [Google Scholar] [CrossRef]
- Ilse, K.K.; Rabanal, J.; Schonleber, L.; Khan, M.Z.; Naumann, V.; Hagendorf, C.; Bagdahn, J. Comparing indoor and outdoor soiling experiments for different glass coatings and microstructural analysis of particle caking processes. IEEE J. Photovolt. 2018, 8, 203–209. [Google Scholar] [CrossRef]
- Al-Helal, I.M.; Alhamdan, A.M. Effect of arid environment on radiative properties of greenhouse polyethylene cover. Sol. Energy 2009, 83, 790–798. [Google Scholar] [CrossRef]
- Deng, X.; Mammen, L.; Butt, H.J.; Vollmer, D. Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating. Science 2012, 335, 67–71. [Google Scholar] [CrossRef]
- Scheringer, M.; Trier, X.; Cousins, I.T.; de Voogt, P.; Fletcher, T.; Wang, Z.; Webster, T.F. Helsingør Statement on poly- and perfluorinated alkyl substances (PFASs). Chemosphere 2014, 114, 337–339. [Google Scholar] [CrossRef]
- Long, M.; Peng, S.; Yang, X.; Deng, W.; Wen, N.; Miao, K.; Chen, G.; Miao, X.; Deng, W. One-Step Fabrication of Non-Fluorinated Transparent Super-Repellent Surfaces with Tunable Wettability Functioning in Both Air and Oil. ACS Appl. Mater. Interfaces 2017, 9, 15857–15867. [Google Scholar] [CrossRef]
- Hegner, K.I.; Hinduja, C.; Butt, H.-J.; Vollmer, D. Fluorine-Free Super-Liquid-Repellent Surfaces: Pushing the Limits of PDMS. Nano Lett. 2023, 23, 3116–3121. [Google Scholar] [CrossRef] [PubMed]
- Leem, J.W.; Yeh, J.S. Enhanced transmittance and hydrophilicity of nanostructured glass substrates with antireflective properties using disordered gold nanopatterns. Opt. Express 2012, 20, 4056. [Google Scholar] [CrossRef] [PubMed]
- Infante, D.; Koch, K.W.; Mazumder, P.; Tian, L.; Carrilero, A.; Tulli, D.; Baker, D.; Pruneri, V. Durable, superhydrophobic, antireflection, and low haze glass surfaces using scalable metal dewetting nanostructuring. Nano Res. 2013, 6, 429–440. [Google Scholar] [CrossRef]
- Verma, L.K.; Sakhuja, M.; Son, J.; Danner, A.J.; Yang, H.; Zeng, H.C.; Bhatia, C.S. Self-cleaning and antireflective packaging glass for solar modules. Renew. Energy 2011, 36, 2489–2493. [Google Scholar] [CrossRef]
- Son, J.; Kundu, S.; Verma, L.K.; Sakhuja, M.; Danner, A.J.; Bhatia, C.S.; Yang, H. A practical superhydrophilic self cleaning and antireflective surface for outdoor photovoltaic applications. Sol. Energy Mater. Sol. Cells 2012, 98, 46–51. [Google Scholar] [CrossRef]
- Baquedano, E.; Torné, L.; Caño, P.; Postigo, P.A. Increased efficiency of solar cells protected by hydrophobic and hydrophilic anti-reflecting nanostructured glasses. Nanomaterials 2017, 7, 437. [Google Scholar] [CrossRef]
- Qin, D.; Xia, Y.; Whitesides, G.M. Soft lithography for micro- and nanoscale patterning. Nat. Protoc. 2010, 5, 491–502. [Google Scholar] [CrossRef]
- Padmanabhan, N.T.; John, H. Titanium dioxide based self-cleaning smart surfaces: A short review. J. Environ. Chem. Eng. 2020, 8, 104211. [Google Scholar] [CrossRef]
- Muñoz, D.; Carreras, P.; Escarré, J.; Ibarz, D.; Martín de Nicolás, S.; Voz, C.; Asensi, J.M.; Bertomeu, J. Optimization of KOH etching process to obtain textured substrates suitable for heterojunction solar cells fabricated by HWCVD. Thin Solid Films 2009, 517, 3578–3580. [Google Scholar] [CrossRef]
- Canavese, G.; Marasso, S.L.; Quaglio, M.; Cocuzza, M.; Ricciardi, C.; Pirri, C.F. Polymeric mask protection for alternative KOH silicon wet etching. J. Micromech. Microeng. 2007, 17, 1387–1393. [Google Scholar] [CrossRef]
- Baquedano, E.; Martinez, R.V.; Llorens, J.M.; Postigo, P.A. Fabrication of silicon nanobelts and nanopillars by soft lithography for hydrophobic and hydrophilic photonic surfaces. Nanomaterials 2017, 7, 109. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Bico, J.; Thiele, U.; Quéré, D. Wetting of textured surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2002, 206, 41–46. [Google Scholar] [CrossRef]
- Patankar, N.A. On the modeling of hydrophobic contact angles on rough surfaces. Langmuir 2003, 19, 1249–1253. [Google Scholar] [CrossRef]
- Marmur, A. The lotus effect: Superhydrophobicity and metastability. Langmuir 2004, 20, 3517–3519. [Google Scholar] [CrossRef] [PubMed]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Marmur, A. From hygrophilic to superhygrophobic: Theoretical conditions for making high-contact-angle surfaces from low-contact-angle materials. Langmuir 2008, 24, 7573. [Google Scholar] [CrossRef]
- Manna, O.; Das, S.K.; Sharma, R.; Kar, K.K. Superhydrophobic and Superoleophobic Surfaces in Composite Materials. In Composite Materials: Processing, Applications, Characterizations; Kar, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 648–665. [Google Scholar]
- Vu, H.H.; Nguyen, N.T.; Kashaninejad, N. Re-Entrant Microstructures for Robust Liquid Repellent Surfaces. Adv. Mater. Technol. 2023, 8, 2201836. [Google Scholar] [CrossRef]
- Herminghaus, S. Roughness-induced non-wetting. Europhys. Lett. 2000, 52, 165–170. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bravo, L.; Ampuero, M.; Correa-Puerta, J.; Corrales, T.P.; Flores, S.; Schleyer, B.; Hassan, N.; Häberle, P.; Henríquez, R.; del Campo, V. Glass Surface Nanostructuring by Soft Lithography and Chemical Etching. Nanomaterials 2024, 14, 1714. https://doi.org/10.3390/nano14211714
Bravo L, Ampuero M, Correa-Puerta J, Corrales TP, Flores S, Schleyer B, Hassan N, Häberle P, Henríquez R, del Campo V. Glass Surface Nanostructuring by Soft Lithography and Chemical Etching. Nanomaterials. 2024; 14(21):1714. https://doi.org/10.3390/nano14211714
Chicago/Turabian StyleBravo, Luciano, Martín Ampuero, Jonathan Correa-Puerta, Tomás P. Corrales, Sofía Flores, Benjamín Schleyer, Natalia Hassan, Patricio Häberle, Ricardo Henríquez, and Valeria del Campo. 2024. "Glass Surface Nanostructuring by Soft Lithography and Chemical Etching" Nanomaterials 14, no. 21: 1714. https://doi.org/10.3390/nano14211714
APA StyleBravo, L., Ampuero, M., Correa-Puerta, J., Corrales, T. P., Flores, S., Schleyer, B., Hassan, N., Häberle, P., Henríquez, R., & del Campo, V. (2024). Glass Surface Nanostructuring by Soft Lithography and Chemical Etching. Nanomaterials, 14(21), 1714. https://doi.org/10.3390/nano14211714