Nanosomes in Precision Nanomedicine
Funding
Acknowledgments
Conflicts of Interest
References
- Baldino, L.; Riccardi, D.; Reverchon, E. Production of PEGylated Vancomycin-Loaded Niosomes by a Continuous Supercritical CO2 Assisted Process. Nanomaterials 2024, 14, 846. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Wang, M.; Yang, L.; Song, Y.; Jiang, M.; Yu, X.; Xu, L. Construction of Metal Organic Framework-Derived Fe-N-C Oxidase Nanozyme for Rapid and Sensitive Detection of Alkaline Phosphatase. Nanomaterials 2023, 13, 2496. [Google Scholar] [CrossRef] [PubMed]
- Squittieri, R.; Baldino, L.; Reverchon, E. Production of Antioxidant Transfersomes by a Supercritical CO2 Assisted Process for Transdermal Delivery Applications. Nanomaterials 2023, 13, 1812. [Google Scholar] [CrossRef] [PubMed]
- López-Goerne, T.; Padilla-Godínez, F.J. Catalytic Nanomedicine as a Therapeutic Approach to Brain Tumors: Main Hypotheses for Mechanisms of Action. Nanomaterials 2023, 13, 1541. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, Y.; Pan, Z.; Jia, F.; Xu, C.; Cui, X.; Wang, X.; Wu, Y. Fabrication of Poly Dopamine@poly (Lactic Acid-Co-Glycolic Acid) Nanohybrids for Cancer Therapy via a Triple Collaboration Strategy. Nanomaterials 2023, 13, 1447, corrected in Nanomaterials 2024, 14, 200. https://doi.org/10.3390/nano14020200. [Google Scholar] [CrossRef] [PubMed]
- Nefedova, E.; Shkil, N.N.; Shkil, N.A.; Garibo, D.; Luna Vazquez-Gomez, R.; Pestryakov, A.; Bogdanchikova, N. Solution of the Drug Resistance Problem of Escherichia coli with Silver Nanoparticles: Efflux Effect and Susceptibility to 31 Antibiotics. Nanomaterials 2023, 13, 1088. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-J.; Li, S.; Vijayan, V.; Lee, J.S.; Park, S.S.; Cui, X.; Chung, I.; Lee, J.; Ahn, S.-k.; Kim, J.R.; et al. ROS- and pH-Responsive Polydopamine Functionalized Ti3C2Tx MXene-Based Nanoparticles as Drug Delivery Nanocarriers with High Antibacterial Activity. Nanomaterials 2022, 12, 4392. [Google Scholar] [CrossRef] [PubMed]
- Menichetti, A.; Mordini, D.; Montalti, M. Polydopamine Nanosystems in Drug Delivery: Effect of Size, Morphology, and Surface Charge. Nanomaterials 2024, 14, 303. [Google Scholar] [CrossRef] [PubMed]
- Qi, R.; Cui, Y.; Liu, J.; Wang, X.; Yuan, H. Recent Advances of Composite Nanomaterials for Antibiofilm Application. Nanomaterials 2023, 13, 2725. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldino, L. Nanosomes in Precision Nanomedicine. Nanomaterials 2024, 14, 1717. https://doi.org/10.3390/nano14211717
Baldino L. Nanosomes in Precision Nanomedicine. Nanomaterials. 2024; 14(21):1717. https://doi.org/10.3390/nano14211717
Chicago/Turabian StyleBaldino, Lucia. 2024. "Nanosomes in Precision Nanomedicine" Nanomaterials 14, no. 21: 1717. https://doi.org/10.3390/nano14211717
APA StyleBaldino, L. (2024). Nanosomes in Precision Nanomedicine. Nanomaterials, 14(21), 1717. https://doi.org/10.3390/nano14211717