Nanoelectronics: Materials, Devices and Applications
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Taylor, M.B. A Landscape of the New Dark Silicon Design Regime. IEEE Micro 2013, 33, 8–19. [Google Scholar] [CrossRef]
- Aftab, S.; Hussain, S.; Al-Kahtani, A.A. Latest Innovations in 2D Flexible Nanoelectronics. Adv. Mater. 2023, 35, 2301280. [Google Scholar] [CrossRef] [PubMed]
- Hui, L.W.; Bai, R.B.; Liu, H.T. DNA-Based Nanofabrication for Nanoelectronics. Adv. Funct. Mater. 2022, 32, 202112331. [Google Scholar] [CrossRef]
- Zheng, G.F. Nanoelectronics Aiming at Cancer. Clin. Chem. 2015, 61, 664–665. [Google Scholar] [CrossRef] [PubMed]
- Illarionov, Y.Y.; Knobloch, T.; Jech, M.; Lanza, M.; Akinwande, D.; Vexler, M.I.; Mueller, T.; Lemme, M.C.; Fiori, G.; Schwierz, F.; et al. Insulators for 2D nanoelectronics: The gap to bridge. Nat. Commun. 2020, 11, 3385. [Google Scholar] [CrossRef] [PubMed]
- Nordendorf, G.; Jünnemann-Held, G.; Lorenz, A.; Kitzerow, H.-S. Effects of Composition and Polymerization Conditions on the Electro-Optic Performance of Liquid Crystal–Polymer Composites Doped with Ferroelectric Nanoparticles. Nanomaterials 2024, 14, 961. [Google Scholar] [CrossRef]
- Ustad, R.E.; Chavan, V.D.; Kim, H.; Shin, M.-h.; Kim, S.-K.; Choi, K.-K.; Kim, D.-k. Thermal, Mechanical, and Electrical Stability of Cu Films in an Integration Process with Photosensitive Polyimide (PSPI) Films. Nanomaterials 2023, 13, 2642. [Google Scholar] [CrossRef]
- Zhao, M.J.; Yan, J.H.; Wang, Y.T.; Chen, Q.Z.; Cao, R.J.; Xu, H.; Wuu, D.-S.; Wu, W.-Y.; Lai, F.-M.; Lien, S.-Y.; et al. The Enhanced Performance of Oxide Thin-Film Transistors Fabricated by a Two-Step Deposition Pressure Process. Nanomaterials 2024, 14, 690. [Google Scholar] [CrossRef]
- Xie, H.; Wu, H.; Liu, C. Non-Volatile Memory Based on ZnO Thin-Film Transistor with Self-Assembled Au Nanocrystals. Nanomaterials 2024, 14, 678. [Google Scholar] [CrossRef]
- Alam, F.; He, G.; Yan, J.; Wang, W.H. All-Water-Driven High-k HfO2 Gate Dielectrics and Applications in Thin Film Transistors. Nanomaterials 2023, 13, 694. [Google Scholar] [CrossRef]
- Park, B.-J.; Kim, H.-S.; Hahm, S.-H. Interface Trap Effect on the n-Channel GaN Schottky Barrier-Metal–Oxide Semiconductor Field-Effect Transistor for Ultraviolet Optoelectronic Integration. Nanomaterials 2024, 14, 59. [Google Scholar] [CrossRef] [PubMed]
- Dou, W.T.; Zhou, C.Q.; Qin, R.D.; Yang, Y.M.; Guo, H.H.; Mu, Z.Q.; Yu, W.J. Super-High-Frequency Bulk Acoustic Resonators Based on Aluminum Scandium Nitride for Wideband Applications. Nanomaterials 2023, 13, 2737. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.J.; Yu, Q.; He, G.; Wang, W.H.; Lu, J.J.; Yao, B.; Liu, S.Y.; Fang, Z.B. Interface Optimization and Performance Enhancement of Er2O3-Based MOS Devices by ALD-Derived Al2O3 Passivation Layers and Annealing Treatment. Nanomaterials 2023, 13, 1740. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.W.; Han, J.; Zhang, X.; Wang, C.C. Fish Scale for Wearable, Self-Powered TENG. Nanomaterials 2024, 14, 463. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.X.; Zhang, H.N.; Chen, C.; Tu, X.B.; Fang, L.; Zhang, M.J.; He, W.; Wang, P.H. Self-Powered Dual-Band Electrochromic Supercapacitor Devices for Smart Window Based on Ternary Dielectric Triboelectric Nanogenerator. Nanomaterials 2024, 14, 229. [Google Scholar] [CrossRef]
- Chakraborty, I.; Lai, S.-N.; Wu, J.-M.; Lai, C.-S. α-Fe2O3 Nanoparticles Aided-Dual Conversion for Self-Powered Bio-Based Photodetector. Nanomaterials 2022, 12, 1147. [Google Scholar] [CrossRef]
- Wang, X.Q.; Qin, Q.H.; Lu, Y.; Mi, Y.J.; Meng, J.J.; Zhao, Z.Q.; Wu, H.; Cao, X.; Wang, N. Smart Triboelectric Nanogenerators Based on Stimulus-Response Materials: From Intelligent Applications to Self-Powered Systems. Nanomaterials 2023, 13, 1316. [Google Scholar] [CrossRef]
- Tian, X.C.; Li, B.C.; Sun, H.; Jiang, Y.C.; Zhao, R.; Zhao, M.; Gao, J.; Xing, J.; Qiu, J.; Liu, G.Z. Visible-Light-Driven Semiconductor–Metal Transition in Electron Gas at the (100) Surface of KTaO3. Nanomaterials 2023, 13, 3055. [Google Scholar] [CrossRef]
- Bangolla, H.K.; Lee, Y.-C.; Shen, W.-C.; Ulaganathan, R.K.; Sankar, R.; Du, H.-Y.; Chen, R.-S. Photoconduction Properties in Tungsten Disulfide Nanostructures. Nanomaterials 2023, 13, 2190. [Google Scholar] [CrossRef]
- Shi, H.W.; Li, K.; Li, F.; Ma, J.X.; Tu, Y.B.; Long, M.S.; Lu, Y.L.; Gong, W.P.; Wang, C.C.; Shan, L. Enhanced Piezoelectricity and Thermal Stability of Electrostrain Performance in BiFeO3-Based Lead-Free Ceramics. Nanomaterials 2023, 13, 942. [Google Scholar] [CrossRef]
- Slimani, M.A.; Cloutier, S.G.; Izquierdo, R. Recent Advances in the Photonic Curing of the Hole Transport Layer, the Electron Transport Layer, and the Perovskite Layers to Improve the Performance of Perovskite Solar Cells. Nanomaterials 2024, 14, 886. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.H.; Wang, J.S.; Cao, W.J.; Li, L.; Luo, M.X.; Wang, C.C. Humidity Sensing Properties of (In+Nb) Doped HfO2 Ceramics. Nanomaterials 2023, 13, 951. [Google Scholar] [CrossRef] [PubMed]
- Polachan, K.; Chatterjee, B.; Weigand, S.; Sen, S. Human Body–Electrode Interfaces for Wide-Frequency Sensing and Communication: A Review. Nanomaterials 2021, 11, 2152. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C. Nanoelectronics: Materials, Devices and Applications. Nanomaterials 2024, 14, 1716. https://doi.org/10.3390/nano14211716
Wang C. Nanoelectronics: Materials, Devices and Applications. Nanomaterials. 2024; 14(21):1716. https://doi.org/10.3390/nano14211716
Chicago/Turabian StyleWang, Chunchang. 2024. "Nanoelectronics: Materials, Devices and Applications" Nanomaterials 14, no. 21: 1716. https://doi.org/10.3390/nano14211716
APA StyleWang, C. (2024). Nanoelectronics: Materials, Devices and Applications. Nanomaterials, 14(21), 1716. https://doi.org/10.3390/nano14211716