Ni Nanoparticles Supported on Graphene-Based Materials as Highly Stable Catalysts for the Cathode of Alkaline Membrane Fuel Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalysts Preparation
2.2. Physicochemical Characterisation
2.3. Preparation of Membrane Electrode Assemblies
2.4. Fuel Cell Testing
3. Results and Discussion
3.1. Structural and Morphological Characterisation
3.2. FC Performance: Effect of Temperature
3.3. Durability Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lucia, U. Overview on fuel cells. Renew. Sustain. Energy Rev. 2014, 30, 164–169. [Google Scholar] [CrossRef]
- Gutru, R.; Turtayeva, Z.; Xu, F.; Maranzana, G.; Vigolo, B.; Desforges, A. A comprehensive review on water management strategies and developments in anion exchange membrane fuel cells. Int. J. Hydrogen Energy 2020, 45, 19642–19663. [Google Scholar] [CrossRef]
- Hossen, M.; Hasan, S.; Sardar, R.I.; bin Haider, J.; Mottakin, K.; Tammeveski, K.; Atanassov, P. State-of-the-art and developmental trends in platinum group metal-free cathode catalyst for anion exchange membrane fuel cell (AEMFC). Appl. Catal. B Environ. 2023, 325, 121733. [Google Scholar] [CrossRef]
- Ferriday, T.; Middleton, P.H. Alkaline fuel cell technology—A review. Int. J. Hydrogen Energy 2021, 46, 18489–18510. [Google Scholar] [CrossRef]
- Gao, X.; He, L.; Yu, H.; Xie, F.; Yang, Y.; Shao, Z. The non-precious metal ORR catalysts for the anion exchange membrane fuel cells application: A numerical simulation and experimental study. Int. J. Hydrogen Energy 2020, 45, 23353–23367. [Google Scholar] [CrossRef]
- Mustain, W.E.; Chatenet, M.; Page, M.; Kim, Y.S. Durability challenges of anion exchange membrane fuel cells. Energy Environ. Sci. 2020, 13, 2805–2838. [Google Scholar] [CrossRef]
- Biancolli, A.L.G.; Bsoul-Haj, S.; Douglin, J.C.; Barbosa, A.S.; de Sousa, R.R.; Rodrigues, O.; Lanfredi, A.J.; Dekel, D.R.; Santiago, E.I. High-performance radiation grafted anion-exchange membranes for fuel cell applications: Effects of irradiation conditions on ETFE-based membranes properties. J. Membr. Sci. 2022, 641, 119879. [Google Scholar] [CrossRef]
- Kabir, S.; Lemire, K.; Artyushkova, K.; Roy, A.; Odgaard, M.; Schlueter, D.; Oshchepkov, A.; Bonnefont, A.; Savinova, E.; Sabarirajan, D.C.; et al. Platinum group metal-free NiMo hydrogen oxidation catalysts: High performance and durability in alkaline exchange membrane fuel cells. J. Mater. Chem. A 2017, 5, 24433–24443. [Google Scholar] [CrossRef]
- Hernández-Flores, A.; Salazar-Gastélum, M.; Pérez-Sicairos, S.; Romero-Castañón, T.; Flores-Hernández, J. Preparation of membrane-electrode assemblies for alkaline fuel cells: Effect of the ionomeric solution. Mater. Lett. 2021, 303, 130494. [Google Scholar] [CrossRef]
- Chen, N.; Lee, Y.M. Anion exchange polyelectrolytes for membranes and ionomers. Prog. Polym. Sci. 2021, 113, 101345. [Google Scholar] [CrossRef]
- Truong, V.M.; Wang, C.-L.; Yang, M.; Yang, H. Effect of tunable hydrophobic level in the gas diffusion substrate and microporous layer on anion exchange membrane fuel cells. J. Power Sources 2018, 402, 301–310. [Google Scholar] [CrossRef]
- Ehelebe, K.; Ashraf, T.; Hager, S.; Seeberger, D.; Thiele, S.; Cherevko, S. Fuel cell catalyst layer evaluation using a gas diffusion electrode half-cell: Oxygen reduction reaction on Fe-N-C in alkaline media. Electrochem. Commun. 2020, 116, 106761. [Google Scholar] [CrossRef]
- Truong, V.M.; Duong, N.B.; Yang, H. Effect of Gas Diffusion Layer Thickness on the Performance of Anion Exchange Membrane Fuel Cells. Processes 2021, 9, 718. [Google Scholar] [CrossRef]
- Carlson, A.; Shapturenka, P.; Eriksson, B.; Lindbergh, G.; Lagergren, C.; Lindström, R.W. Electrode parameters and operating conditions influencing the performance of anion exchange membrane fuel cells. Electrochim. Acta 2018, 277, 151–160. [Google Scholar] [CrossRef]
- Omasta, T.; Wang, L.; Peng, X.; Lewis, C.; Varcoe, J.; Mustain, W. Importance of balancing membrane and electrode water in anion exchange membrane fuel cells. J. Power Sources 2018, 375, 205–213. [Google Scholar] [CrossRef]
- Biemolt, J.; Douglin, J.C.; Singh, R.K.; Davydova, E.S.; Yan, N.; Rothenberg, G.; Dekel, D.R. An Anion-Exchange Membrane Fuel Cell Containing Only Abundant and Affordable Materials. Energy Technol. 2021, 9, 2000909. [Google Scholar] [CrossRef]
- Truong, V.M.; Tolchard, J.R.; Svendby, J.; Manikandan, M.; Miller, H.A.; Sunde, S.; Yang, H.; Dekel, D.R.; Barnett, A.O. Platinum and Platinum Group Metal-Free Catalysts for Anion Exchange Membrane Fuel Cells. Energies 2020, 13, 582. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, X.; Sun, P.; Xu, H.; Yang, L.; Zeng, X.; Huang, Y.; Wang, S.; Cao, D. AgNPs@Fe-N-C oxygen reduction catalysts for anion exchange membrane fuel cells. Nano Energy 2022, 100, 107466. [Google Scholar] [CrossRef]
- Das, S.K.; Kesh, A.; Akula, S.; Panda, S.K.; Kiruthika, G.V.M.; Sahu, A.K. Co-, Ni-Catalyzed Borylation of Carbon Nanofibers for Oxygen Reduction Reaction in an Anion Exchange Membrane Fuel Cell. ACS Appl. Energy Mater. 2022, 5, 10240–10253. [Google Scholar] [CrossRef]
- Akula, S.; Mooste, M.; Kozlova, J.; Käärik, M.; Treshchalov, A.; Kikas, A.; Kisand, V.; Aruväli, J.; Paiste, P.; Tamm, A.; et al. Transition metal (Fe, Co, Mn, Cu) containing nitrogen-doped porous carbon as efficient oxygen reduction electrocatalysts for anion exchange membrane fuel cells. Chem. Eng. J. 2023, 458, 141468. [Google Scholar] [CrossRef]
- Park, S.; Choi, D.; Lee, D.W.; Choi, B.B.; Yoo, S.J. Current progress of electrocatalysts for anion exchange membrane fuel cells. Korean J. Chem. Eng. 2023, 40, 1549–1562. [Google Scholar] [CrossRef]
- Teppor, P.; Jäger, R.; Paalo, M.; Adamson, A.; Härmas, M.; Volobujeva, O.; Aruväli, J.; Palm, R.; Lust, E. Peat as a carbon source for non-platinum group metal oxygen electrocatalysts and AEMFC cathodes. Int. J. Hydrogen Energy 2022, 47, 16908–16920. [Google Scholar] [CrossRef]
- Zion, N.; Douglin, J.C.; Cullen, D.A.; Zelenay, P.; Dekel, D.R.; Elbaz, L. Porphyrin Aerogel Catalysts for Oxygen Reduction Reaction in Anion-Exchange Membrane Fuel Cells. Adv. Funct. Mater. 2021, 31, 2100963. [Google Scholar] [CrossRef]
- Marra, E.; Grimler, H.; Montserrat-Sisó, G.; Lindström, R.W.; Wickman, B.; Lindbergh, G.; Lagergren, C. Oxygen reduction reaction kinetics on a Pt thin layer electrode in AEMFC. Electrochim. Acta 2022, 435, 141376. [Google Scholar] [CrossRef]
- Ricciardi, B.; Mecheri, B.; Freitas, W.d.S.; Ficca, V.C.A.; Placidi, E.; Gatto, I.; Carbone, A.; Capasso, A.; D’Epifanio, A. Porous Iron-Nitrogen-Carbon Electrocatalysts for Anion Exchange Membrane Fuel Cells (AEMFC). ChemElectroChem 2023, 10, e202201115. [Google Scholar] [CrossRef]
- Gutru, R.; Turtayeva, Z.; Xu, F.; Maranzana, G.; Thimmappa, R.; Mamlouk, M.; Desforges, A.; Vigolo, B. Recent progress in heteroatom doped carbon based electrocatalysts for oxygen reduction reaction in anion exchange membrane fuel cells. Int. J. Hydrogen Energy 2023, 48, 3593–3631. [Google Scholar] [CrossRef]
- Ratso, S.; Kruusenberg, I.; Käärik, M.; Kook, M.; Saar, R.; Pärs, M.; Leis, J.; Tammeveski, K. Highly efficient nitrogen-doped carbide-derived carbon materials for oxygen reduction reaction in alkaline media. Carbon 2017, 113, 159–169. [Google Scholar] [CrossRef]
- Kumar, M.P.; Raju, M.M.; Arunchander, A.; Selvaraj, S.; Kalita, G.; Narayanan, T.N.; Sahu, A.K.; Pattanayak, D.K. Nitrogen Doped Graphene as Metal Free Electrocatalyst for Efficient Oxygen Reduction Reaction in Alkaline Media and Its Application in Anion Exchange Membrane Fuel Cells. J. Electrochem. Soc. 2016, 163, F848–F855. [Google Scholar] [CrossRef]
- Luo, W.; Cao, L.; Hou, M.; Ren, Z.; Xie, F.; Shao, Z. N-doped porous carbon encapsulated Fe and Ni bimetal derived from MOFs as efficient oxygen reduction reaction catalysts for anion exchange membrane fuel cell. J. Electroanal. Chem. 2023, 944, 117652. [Google Scholar] [CrossRef]
- Kumar, Y.; Kibena-Põldsepp, E.; Mooste, M.; Kozlova, J.; Kikas, A.; Aruväli, J.; Käärik, M.; Kisand, V.; Leis, J.; Tamm, A.; et al. Iron and Nickel Phthalocyanine-Modified Nanocarbon Materials as Cathode Catalysts for Anion-Exchange Membrane Fuel Cells and Zinc-Air Batteries**. ChemElectroChem 2022, 9, e202200717. [Google Scholar] [CrossRef]
- Kruusenberg, I.; Ramani, D.; Ratso, S.; Joost, U.; Saar, R.; Rauwel, P.; Kannan, A.M.; Tammeveski, K. Cobalt–Nitrogen Co-doped Carbon Nanotube Cathode Catalyst for Alkaline Membrane Fuel Cells. ChemElectroChem 2016, 3, 1455–1465. [Google Scholar] [CrossRef]
- Huang, W.; Chen, Y.; Deng, G.; Xu, C.; Cheng, J. High performance CuMn–N–C@MXene+CNT catalyst toward oxygen reduction reaction for AEMFC. Int. J. Hydrogen Energy 2024, 88, 1003–1009. [Google Scholar] [CrossRef]
- Rojas-Carbonell, S.; Santoro, C.; Serov, A.; Atanassov, P. Transition metal-nitrogen-carbon catalysts for oxygen reduction reaction in neutral electrolyte. Electrochem. Commun. 2017, 75, 38–42. [Google Scholar] [CrossRef]
- Montserrat-Sisó, G.; Wickman, B. Tuning the Activity of Silver Alloys for the Oxygen Reduction Reaction in Alkaline Media. ACS Appl. Energy Mater. 2023, 6, 6428–6442. [Google Scholar] [CrossRef]
- Leteba, G.M.; Mitchell, D.R.G.; Levecque, P.B.J.; Van Steen, E.; Lang, C.I. Topographical and compositional engineering of core–shell Ni@Pt ORR electro-catalysts. RSC Adv. 2020, 10, 29268–29277. [Google Scholar] [CrossRef]
- Oshchepkov, A.G.; Simonov, P.A.; Kuznetsov, A.N.; Shermukhamedov, S.A.; Nazmutdinov, R.R.; Kvon, R.I.; Zaikovskii, V.I.; Kardash, T.Y.; Fedorova, E.A.; Cherstiouk, O.V.; et al. Bimetallic NiM/C (M = Cu and Mo) Catalysts for the Hydrogen Oxidation Reaction: Deciphering the Role of Unintentional Surface Oxides in the Activity Enhancement. ACS Catal. 2022, 12, 15341–15351. [Google Scholar] [CrossRef]
- Yang, L.; Liu, H.; Qiao, Z.; Sun, P.; Li, D.; Jiang, R.; Liu, S.; Niu, Z.; Zhang, Y.; Lin, T.; et al. Highly Active and Durable Metal-Free Carbon Catalysts for Anion-Exchange Membrane Fuel Cells. Adv. Energy Mater. 2023, 13, 2204390. [Google Scholar] [CrossRef]
- Banham, D.; Ye, S.; Pei, K.; Ozaki, J.-I.; Kishimoto, T.; Imashiro, Y. A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Power Sources 2015, 285, 334–348. [Google Scholar] [CrossRef]
- Kumar, R.S.; Gokulapriyan, R.; Sakthivel, V.; Sayfiddinov, D.; Kim, A.R.; Arunkumar, I.; Yoo, D.J. Synthesis and Evaluation of Reduced Graphene Oxide (rGO) Supported on Ni3O4 as Spinel-Based Cathode Catalyst for the Effective Anion-Exchange Membrane Fuel Cell Application. ChemCatChem 2024, e202401229. [Google Scholar] [CrossRef]
- Luis-Sunga, M.; Martínez, S.J.; Rodríguez, J.L.; García, G.; Pastor, E. Graphene-based Materials as Highly Promising Catalysts for Energy Storage and Conversion Applications. In Nanostructured Multifunctional Materials, 1st ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Abingdon, UK, 2021; pp. 230–260. [Google Scholar] [CrossRef]
- Su, H.; Hu, Y.H. Recent advances in graphene-based materials for fuel cell applications. Energy Sci. Eng. 2021, 9, 958–983. [Google Scholar] [CrossRef]
- Ramachandran, K.; Vinothkannan, M.; Kim, A.R.; Ramakrishnan, S.; Yoo, D.J. Ultrafine bimetallic alloy supported on nitrogen doped reduced graphene oxide toward liquid-fuel oxidation: Profile of improved performance and extended durability. Int. J. Hydrogen Energy 2019, 44, 21769–21780. [Google Scholar] [CrossRef]
- Kannan, R.; Kim, A.R.; Nahm, K.S.; Lee, H.-K.; Yoo, D.J. Synchronized synthesis of Pd@C-RGO carbocatalyst for improved anode and cathode performance for direct ethylene glycol fuel cell. Chem. Commun. 2014, 50, 14623–14626. [Google Scholar] [CrossRef] [PubMed]
- Fajardo, S.; Ocón, P.; Rodríguez, J.; Pastor, E. Co supported on N and S dual-doped reduced graphene oxide as highly active oxygen-reduction catalyst for direct ethanol fuel cells. Chem. Eng. J. 2023, 461, 142053. [Google Scholar] [CrossRef]
- Rivera, L.M.; Fajardo, S.; Arévalo, M.D.C.; García, G.; Pastor, E. S- and N-Doped Graphene Nanomaterials for the Oxygen Reduction Reaction. Catalysts 2017, 7, 278. [Google Scholar] [CrossRef]
- García, G.; Alcaide Monterrubio, F.; Pastor, E. Graphene materials for the electrocatalysts used for fuel cells and electrolyzers. In Emerging Carbon Materials for Catalysis; Elsevier: Amsterdam, The Netherlands, 2021; pp. 389–415. [Google Scholar] [CrossRef]
- Martínez, S.; Lavacchi, A.; Berreti, E.; Capozzoli, L.; Evangelisti, C.; Arranz, A.; Rodríguez, J.L.; Pastor, E. Nickel nanoparticles supported on doped graphene-based materials for the ORR and HER in alkaline medium. Inorganica Chim. Acta 2024, 566, 122008. [Google Scholar] [CrossRef]
- Jin, Z.; Yao, J.; Kittrell, C.; Tour, J.M. Large-Scale Growth and Characterizations of Nitrogen-Doped Monolayer Graphene Sheets. ACS Nano 2011, 5, 4112–4117. [Google Scholar] [CrossRef]
- Raza, W.; Ahmad, K.; Kim, H. Nitrogen-doped graphene as an efficient metal-free catalyst for ammonia and non-enzymatic glucose sensing. J. Phys. Chem. Solids 2022, 160, 110359. [Google Scholar] [CrossRef]
- Kepaptsoglou, D.; Hardcastle, T.P.; Seabourne, C.R.; Bangert, U.; Zan, R.; Amani, J.A.; Hofsäss, H.; Nicholls, R.J.; Brydson, R.M.D.; Scott, A.J.; et al. Electronic Structure Modification of Ion Implanted Graphene: The Spectroscopic Signatures of p- and n-Type Doping. ACS Nano 2015, 9, 11398–11407. [Google Scholar] [CrossRef]
- Han, J.N.; He, X.; Fan, Z.Q.; Zhang, Z.H. Metal doped armchair graphene nanoribbons: Electronic structure, carrier mobility and device properties. Phys. Chem. Chem. Phys. 2019, 21, 1830–1840. [Google Scholar] [CrossRef]
- Yuan, Y.; Rong, J.; Zheng, L.; Hu, Z.; Hu, S.; Wu, C.; Zhuang, Z. Control of the metal-support interactions in Ru on N-doped graphene-encapsulated Ni nanoparticles to promote their hydrogen evolution reaction catalytic performance. Int. J. Hydrogen Energy 2024, 52, 687–695. [Google Scholar] [CrossRef]
- Sahu, S.; Sahoo, M.R.; Kushwaha, A.K.; Rout, G.; Nayak, S. Charge transfer and hybridization effect at the graphene-nickel interface: A tight binding model study. Carbon 2019, 142, 685–696. [Google Scholar] [CrossRef]
- Fioravanti, F.; Martínez, S.; Delgado, S.; García, G.; Rodriguez, J.L.; Tejera, E.P.; Lacconi, G.I. Effect of MoS2 in doped-reduced graphene oxide composites. Enhanced electrocatalysis for HER. Electrochim. Acta 2023, 441, 141781. [Google Scholar] [CrossRef]
- Gavidia, L.M.R.; García, G.; Anaya, D.; Querejeta, A.; Alcaide, F.; Pastor, E. Carbon-supported Pt-free catalysts with high specificity and activity toward the oxygen reduction reaction in acidic medium. Appl. Catal. B Environ. 2016, 184, 12–19. [Google Scholar] [CrossRef]
- Er, O.F.; Caglar, A.; Ulas, B.; Kivrak, H.; Kivrak, A. Novel carbon nanotube supported Co@Ag@Pd formic acid electrooxidation catalysts prepared via sodium borohydride sequential reduction method. Mater. Chem. Phys. 2020, 241, 122422. [Google Scholar] [CrossRef]
- Bellini, M.; Pagliaro, M.V.; Lenarda, A.; Fornasiero, P.; Marelli, M.; Evangelisti, C.; Innocenti, M.; Jia, Q.; Mukerjee, S.; Jankovic, J.; et al. Palladium–Ceria Catalysts with Enhanced Alkaline Hydrogen Oxidation Activity for Anion Exchange Membrane Fuel Cells. ACS Appl. Energy Mater. 2019, 2, 4999–5008. [Google Scholar] [CrossRef]
- Wang, L.; Brink, J.J.; Liu, Y.; Herring, A.M.; Ponce-González, J.; Whelligan, D.K.; Varcoe, J.R. Non-fluorinated pre-irradiation-grafted (peroxidated) LDPE-based anion-exchange membranes with high performance and stability. Energy Environ. Sci. 2017, 10, 2154–2167. [Google Scholar] [CrossRef]
- Miller, H.A.; Lavacchi, A.; Vizza, F.; Marelli, M.; Di Benedetto, F.; D’Acapito, F.; Paska, Y.; Page, M.; Dekel, D.R. A Pd/C-CeO2 Anode Catalyst for High-Performance Platinum-Free Anion Exchange Membrane Fuel Cells. Angew. Chem. Int. Ed. 2016, 55, 6004–6007. [Google Scholar] [CrossRef]
- Miller, H.A.; Pagliaro, M.V.; Bellini, M.; Bartoli, F.; Wang, L.; Salam, I.; Varcoe, J.R.; Vizza, F. Integration of a Pd-CeO2/C Anode with Pt and Pt-Free Cathode Catalysts in High Power Density Anion Exchange Membrane Fuel Cells. ACS Appl. Energy Mater. 2020, 3, 10209–10214. [Google Scholar] [CrossRef]
- Zou, D.; Yi, Y.; Song, Y.; Guan, D.; Xu, M.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. The BaCe0.16Y0.04Fe0.8O3−δ nanocomposite: A new high-performance cobalt-free triple-conducting cathode for protonic ceramic fuel cells operating at reduced temperatures. J. Mater. Chem. A 2022, 10, 5381–5390. [Google Scholar] [CrossRef]
- Yoon, D.; Cheong, H. Raman Spectroscopy for Characterization of Graphene. In Raman Spectroscopy for Nanomaterials Characterization; Springer: Berlin/Heidelberg, Germany, 2012; pp. 191–214. [Google Scholar] [CrossRef]
- Dai, J.; Zhu, Y.; Tahini, H.A.; Lin, Q.; Chen, Y.; Guan, D.; Zhou, C.; Hu, Z.; Lin, H.-J.; Chan, T.-S.; et al. Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nat. Commun. 2020, 11, 5657. [Google Scholar] [CrossRef]
- Hyun, J.; Lee, D.W.; Oh, E.; Bae, H.; Park, J.; Doo, G.; Kim, H.-T. Manufacturing and structural control of slurry-cast catalyst layers for AEMFC. J. Power Sources 2023, 573, 233161. [Google Scholar] [CrossRef]
- Xu, T.; Yang, D.; Fan, Z.; Li, X.; Liu, Y.; Guo, C.; Zhang, M.; Yu, Z.-Z. Reduced graphene oxide/carbon nanotube hybrid fibers with narrowly distributed mesopores for flexible supercapacitors with high volumetric capacitances and satisfactory durability. Carbon 2019, 152, 134–143. [Google Scholar] [CrossRef]
- Thomas, M.; Illathvalappil, R.; Kurungot, S.; Nair, B.N.; Mohamed, A.P.; Anilkumar, G.M.; Yamaguchi, T.; Hareesh, U.S. Morphological Ensembles of N-Doped Porous Carbon Derived from ZIF-8/Fe-Graphene Nanocomposites: Processing and Electrocatalytic Studies. ChemistrySelect 2018, 3, 8688–8697. [Google Scholar] [CrossRef]
- Xu, J.B.; Zhao, T.S. Mesoporous carbon with uniquely combined electrochemical and mass transport characteristics for polymer electrolyte membrane fuel cells. RSC Adv. 2013, 3, 16–24. [Google Scholar] [CrossRef]
- Mamlouk, M.; Kumar, S.S.; Gouerec, P.; Scott, K. Electrochemical and fuel cell evaluation of Co based catalyst for oxygen reduction in anion exchange polymer membrane fuel cells. J. Power Sources 2011, 196, 7594–7600. [Google Scholar] [CrossRef]
- Hossen, M.; Artyushkova, K.; Atanassov, P.; Serov, A. Synthesis and characterization of high performing Fe-N-C catalyst for oxygen reduction reaction (ORR) in Alkaline Exchange Membrane Fuel Cells. J. Power Sources 2018, 375, 214–221. [Google Scholar] [CrossRef]
- Cardoso, E.S.; Fortunato, G.V.; Palm, I.; Kibena-Põldsepp, E.; Greco, A.S.; Júnior, J.L.; Kikas, A.; Merisalu, M.; Kisand, V.; Sammelselg, V.; et al. Effects of N and O groups for oxygen reduction reaction on one- and two-dimensional carbonaceous materials. Electrochim. Acta 2020, 344, 136052. [Google Scholar] [CrossRef]
- Kumar, Y.; Akula, S.; Souza, M.K.; Maia, G.; Tammeveski, K. Recent progress on graphene nanoribbon-based electrocatalysts for oxygen reduction reaction. Curr. Opin. Electrochem. 2024, 47, 101554. [Google Scholar] [CrossRef]
- Lai, L.; Potts, J.R.; Zhan, D.; Wang, L.; Poh, C.K.; Tang, C.; Gong, H.; Shen, Z.; Lin, J.; Ruoff, R.S. Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 2012, 5, 7936–7942. [Google Scholar] [CrossRef]
- Zheng, B.; Wang, J.; Wang, F.-B.; Xia, X.-H. Synthesis of nitrogen doped graphene with high electrocatalytic activity toward oxygen reduction reaction. Electrochem. Commun. 2013, 28, 24–26. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, J.; Dai, L.; Xia, Z. Effect of Microstructure of Nitrogen-Doped Graphene on Oxygen Reduction Activity in Fuel Cells. Langmuir 2012, 28, 7542–7550. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Liu, S.; Priest, C.; Shi, Q.; Wu, G. Atomically dispersed metal–nitrogen–carbon catalysts for fuel cells: Advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 2020, 49, 3484–3524. [Google Scholar] [CrossRef] [PubMed]
- Kiciński, W.; Szala, M.; Bystrzejewski, M. Sulfur-doped porous carbons: Synthesis and applications. Carbon 2014, 68, 1–32. [Google Scholar] [CrossRef]
- You, J.-M.; Ahmed, M.S.; Han, H.S.; Choe, J.E.; Üstündağ, Z.; Jeon, S. New approach of nitrogen and sulfur-doped graphene synthesis using dipyrrolemethane and their electrocatalytic activity for oxygen reduction in alkaline media. J. Power Sources 2015, 275, 73–79. [Google Scholar] [CrossRef]
- Bidault, F.; Brett, D.; Middleton, P.; Brandon, N. Review of gas diffusion cathodes for alkaline fuel cells. J. Power Sources 2009, 187, 39–48. [Google Scholar] [CrossRef]
- Hanif, S.; Iqbal, N.; Shi, X.; Noor, T.; Ali, G.; Kannan, A. NiCo–N-doped carbon nanotubes based cathode catalyst for alkaline membrane fuel cell. Renew. Energy 2020, 154, 508–516. [Google Scholar] [CrossRef]
- Beltrán-Gastélum, M.; Salazar-Gastélum, M.; Flores-Hernández, J.; Botte, G.; Pérez-Sicairos, S.; Romero-Castañon, T.; Reynoso-Soto, E.; Félix-Navarro, R. Pt-Au nanoparticles on graphene for oxygen reduction reaction: Stability and performance on proton exchange membrane fuel cell. Energy 2019, 181, 1225–1234. [Google Scholar] [CrossRef]
- Vinayan, B.P.; Nagar, R.; Rajalakshmi, N.; Ramaprabhu, S. Novel Platinum–Cobalt Alloy Nanoparticles Dispersed on Nitrogen-Doped Graphene as a Cathode Electrocatalyst for PEMFC Applications. Adv. Funct. Mater. 2012, 22, 3519–3526. [Google Scholar] [CrossRef]
- Hu, Z.; Xu, L.; Li, J.; Wang, Q.; Shao, Y.; Chen, X.; Dai, W.; Ouyang, M. Mechanistic insight into the accelerated decay of fuel cells from catalyst-layer structural failure. Energy Convers. Manag. 2021, 227, 113568. [Google Scholar] [CrossRef]
- Chen, B.; Wang, J.; Yang, T.; Cai, Y.; Zhang, C.; Chan, S.H.; Yu, Y.; Tu, Z. Carbon corrosion and performance degradation mechanism in a proton exchange membrane fuel cell with dead-ended anode and cathode. Energy 2016, 106, 54–62. [Google Scholar] [CrossRef]
- Huang, G.; Mandal, M.; Peng, X.; Yang-Neyerlin, A.C.; Pivovar, B.S.; Mustain, W.E.; Kohl, P.A. Composite Poly(norbornene) Anion Conducting Membranes for Achieving Durability, Water Management and High Power (3.4 W/cm2) in Hydrogen/Oxygen Alkaline Fuel Cells. J. Electrochem. Soc. 2019, 166, F637–F644. [Google Scholar] [CrossRef]
Catalyst | SBET (m2·g−1) | Pore Size (nm) | ECSA (m2g−1) [47] |
---|---|---|---|
rGO | 5.1 | 14.6 | 66.8 |
N-rGO | 10.3 | 18.1 | 99.8 |
SNrGO | 59.1 | 6.7 | 109.7 |
Ni/rGO | 263.6 | 4.7 | 60.7 |
Ni/N-rGO | 83.2 | 8.0 | 38.6 |
Ni/SNrGO | 106.9 | 7.2 | 33.3 |
Catalyst | Temperature (°C) | MCD (mA·cm−2) | PPD (mW·cm−2) |
---|---|---|---|
rGO | 40 | 62.3 | 18.9 |
60 | 43.2 | 12.4 | |
80 | 12.0 | 3.6 | |
N-rGO | 40 | 192.6 | 60.0 |
60 | 88.1 | 26.3 | |
80 | 52.5 | 15.7 | |
SNrGO | 40 | 76.5 | 37.5 |
60 | 74.4 | 23.1 | |
80 | 99.8 | 30.2 | |
Ni/rGO | 40 | 195.0 | 103.7 |
60 | 202.2 | 100.0 | |
80 | 254.6 | 102.7 | |
Ni/N-rGO | 40 | 188.5 | 84.3 |
60 | 194.6 | 98.0 | |
80 | 257.3 | 128.8 | |
Ni/SNrGO | 40 | 275.0 | 84.6 |
60 | 244.0 | 97.8 | |
80 | 277.1 | 84.6 |
Catalyst | E0 (mV) | E1 (mV) | E5 (mV) | E10 (mV) | % PL after 1 h | % PL after 5 h | % OPL |
---|---|---|---|---|---|---|---|
rGO | 496 | 363 | 318 | - | 26.8 | 35.9 | |
N-rGO | 594 | 454 | 437 | - | 23.6 | 26.4 | |
SNrGO | 431 | 413 | 413 | - | 4.2 | 4.2 | |
Ni/rGO | 653 | 514 | 512 | 456 | 21.3 | 21.6 | 30.2 |
Ni/N-rGO | 657 | 515 | 500 | 466 | 21.6 | 23.9 | 29.0 |
Ni/SNrGO | 502 | 502 | 493 | 487 | 0 | 1.8 | 3.0 |
Pt/C | 901 | 804 | 778 | 783 | 10.8 | 13.7 | 13.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, S.J.; Cos-Hugas, R.; Bellini, M.; Miller, H.A.; Lavacchi, A.; Rodríguez, J.L.; Pastor, E. Ni Nanoparticles Supported on Graphene-Based Materials as Highly Stable Catalysts for the Cathode of Alkaline Membrane Fuel Cells. Nanomaterials 2024, 14, 1768. https://doi.org/10.3390/nano14211768
Martínez SJ, Cos-Hugas R, Bellini M, Miller HA, Lavacchi A, Rodríguez JL, Pastor E. Ni Nanoparticles Supported on Graphene-Based Materials as Highly Stable Catalysts for the Cathode of Alkaline Membrane Fuel Cells. Nanomaterials. 2024; 14(21):1768. https://doi.org/10.3390/nano14211768
Chicago/Turabian StyleMartínez, Sthephanie J., Raquel Cos-Hugas, Marco Bellini, Hamish A. Miller, Alessandro Lavacchi, José Luis Rodríguez, and Elena Pastor. 2024. "Ni Nanoparticles Supported on Graphene-Based Materials as Highly Stable Catalysts for the Cathode of Alkaline Membrane Fuel Cells" Nanomaterials 14, no. 21: 1768. https://doi.org/10.3390/nano14211768
APA StyleMartínez, S. J., Cos-Hugas, R., Bellini, M., Miller, H. A., Lavacchi, A., Rodríguez, J. L., & Pastor, E. (2024). Ni Nanoparticles Supported on Graphene-Based Materials as Highly Stable Catalysts for the Cathode of Alkaline Membrane Fuel Cells. Nanomaterials, 14(21), 1768. https://doi.org/10.3390/nano14211768