Deep Ultraviolet Excitation Photoluminescence Characteristics and Correlative Investigation of Al-Rich AlGaN Films on Sapphire
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. High-Resolution X-Ray Diffraction Analysis
= [{λ/sinθGaN} − {λ/sinθAlGaN}]/[{λ/sinθGaN} − {λ/sinθAlN}]
= [{1/sinθGaN} − {1/sinθAlGaN}]/[{1/sinθGaN} − {1/sinθAlN}]
3.2. Spectroscopic Ellipsometry Analysis
3.3. Raman Spectroscopy Analysis
Sample Name (x%) | A60 (60.2%) | A71 (71.4%) | A75 (75.3%) | A81 (81.1%) | A87 (87.7%) |
---|---|---|---|---|---|
A1(LO) peak (cm−1) | 845.77 | 864.05 | 868.25 | 871.98 | 884.32 |
A1(LO) FWHM (cm−1) | 25.88 | 20.82 | 16.67 | 10.64 | 17.26 |
ωp (THz) | 0.159 | 0.163 | 0.164 | 0.164 | 0.167 |
γp (THz) | 4.88 | 3.92 | 3.14 | 2.01 | 3.25 |
τphonon (ps) | 0.205 | 0.255 | 0.318 | 0.498 | 3.07 |
Fitting Accuracy | 97.01% | 87.24% | 79.92% | 77.21% | 87.92% |
N (×1018 cm−3) | 7.51 | 9.17 | 10.9 | 12.2 | 15.5 |
3.4. Photoluminescence Analysis
3.5. Temperature-Dependent Photoluminescence Analysis
3.6. Time-Resolved Photoluminescence Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feng, Z.C. (Ed.) Handbook of Solid-State Lighting and LEDs; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2017; Chapter 24; p. 705. ISBN 9781498741415. [Google Scholar] [CrossRef]
- Chu, R.; Shinohara, K. (Eds.) III-Nitride Electronic Devices; Academic Press: Cambridge, MA, USA, 2019; ISBN 10: 0128175443, ISBN 13: 9780128175446. [Google Scholar]
- Hao, Y.; Zhang, J.-F.; Zhang, J.-C. (Eds.) Nitride Wide Bandgap Semiconductor Material and Electronic Devices; CRC Press: Boca Raton, FL, USA, 2020; ISBN 10: 0367574365, ISBN 13: 9780367574369. [Google Scholar]
- Sivadasan, A.K.; Singha, C.; Raghavendra, K.G.; Amirthapandian, S.; Bhattacharyya, A.; Dasgupta, A.; Dhara, S. Surface optical phonon modes in hexagonal shaped Al0.97Ga0.03N nanostructures. Appl. Phys. A 2017, 123, 527. [Google Scholar] [CrossRef]
- Bokhana, P.A.; Fateeva, N.V.; Malina, T.V.; Osinnykha, I.V.; Zakrevsky, D.E.; Zhuravlev, K.S. Luminescence properties of heavily doped AlxGa1-xN/AlN films grown on sapphire substrate. J. Lumin. 2018, 203, 127–134. [Google Scholar] [CrossRef]
- Reddy, P.; Breckenridge, M.H.; Guo, Q.; Klump, A.; Khachariya, D.; Pavlidis, S.; Mecouch, W.; Mita, S.; Moody, B.; Tweedie, J.; et al. High gain, large area, and solar blind avalanche photodiodes based on Al-rich AlGaN grown on AlN substrates. Appl. Phys. Lett. 2020, 116, 081101. [Google Scholar] [CrossRef]
- Foronda, H.M.; Hunter, D.A.; Pietsch, M.; Sulmoni, L.; Muhin, A.; Graupeter, S.; Susilo, N.; Schilling, M.; Enslin, J.; Irmscher, K.; et al. Electrical properties of (11-22) Si:AlGaN layers at high Al contents grown by metal-organic vapor phase epitaxy. Appl. Phys. Lett. 2020, 117, 221101. [Google Scholar] [CrossRef]
- Lee, K.; Page, R.; Protasenko, V.; Schowalter, L.J.; Toita, M.; Xing, H.G.; Jena, D. MBE growth and donor doping of coherent ultrawide bandgap AlGaN alloy layers on single-crystal AlN substrates. Appl. Phys. Lett. 2021, 118, 092101. [Google Scholar] [CrossRef]
- Mondal, S.; Wang, D.; Anhar, A.F.M.; Bhuiyan, U.; Hu, M.; Reddeppa, M.; Wang, P.; Zhao, H.; Mi, Z. Tunable bandgap and Si-doping in N-polar AlGaN on C-face 4H-SiC via molecular beam epitaxy. Appl. Phys. Lett. 2023, 123, 182106. [Google Scholar] [CrossRef]
- Rathkanthiwar, S.; Reddy, P.; Quiñones, C.E.; Loveless, J.; Kamiyama, M.; Bagheri, P.; Khachariya, D.; Eldred, T.; Moody, B.; Mita, S.; et al. Anderson transition in compositionally graded p-AlGaN. J. Appl. Phys. 2023, 134, 195705. [Google Scholar] [CrossRef]
- Majchrzak, D.; Tran, L.; Babij, M.; Serafińczuk, J.; Olszewski, W.; Kuna, R.; Opołczyńska, K.; Piejko, A.; Michałowski, P.; Kudrawiec, R.; et al. Thickness and Mg doping of graded AlGaN layers: Influence on contact layer’s structural and electrical properties for DUV emitters. Mater. Sci. Semicond. Process. 2024, 178, 108452. [Google Scholar] [CrossRef]
- Wang, J.M.; Xu, F.J.; Zhang, L.S.; Lang, J.; Fang, X.Z.; Zhang, Z.Y.; Guo, X.Q.; Ji, C.; Ji, C.Z.; Tan, F.Y.; et al. Progress in efficient doping of Al-rich AlGaN. J. Semicond. 2024, 45, 021801. [Google Scholar] [CrossRef]
- Yamada, R.; Kondo, R.; Miyake, R.; Nishibayasi, T.; Matsubara, E.; Imoto, Y.; Iwayama, S.; Takeuchi, T.; Kamiyama, S.; Miyake, H.; et al. Homoepitaxial Regrowth of AlGaN on AlGaN Templates Prepared via Chemical Mechanical Polishing and Its Application to UV-B Laser Diodes. Phys. Status Solidi A 2024, 2400113. [Google Scholar] [CrossRef]
- Wei, W.; Yang, Y.; Peng, Y.; Maraj, M.; Sun, W. Optical and Electrical Properties of AlxGa1−xN/GaN Epilayers Modulated by Aluminum Content. Molecules 2024, 29, 1152. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.P.; Bai, J.X.; Li, H.B.; Jiang, K.; Ben, J.W.; Zhang, S.L.; Zhang, Z.H.; Sun, X.J.; Li, D.B. 240 nm AlGaN-based deep ultraviolet micro-LEDs: Size effect versus edge effect. J. Semicond. 2024, 45, 012504. [Google Scholar] [CrossRef]
- Ishii, R.; Tanaka, S.; Susilo, N.; Wernicke, T.; Kneissl, M.; Funato, M.; Kawakami, Y. Radiative and Nonradiative Recombination Processes in AlGaN Quantum Wells on Epitaxially Laterally Overgrown AlN/Sapphire from 10 to 500 K. Phys. Status Solidi B 2024, 2400018. [Google Scholar] [CrossRef]
- Liu, X.; Xu, S.; Tao, H.; Cao, Y.; Wang, X.; Shan, H.; Zhang, J.; Hao, Y. High Efficiency Deep Ultraviolet Light-emitting Diodes with Polarity Inversion of Hole Injection Layer. IEEE Photonics J. 2023, 15, 8200205. [Google Scholar] [CrossRef]
- Liu, X.; Lv, Z.; Liao, Z.; Sun, Y.; Zhang, Z.; Sun, K.; Zhou, Q.; Tang, B.; Geng, H.; Qi, S.; et al. Highly efficient AlGaN-based deep-ultraviolet lightemitting diodes: From bandgap engineering to device craft. Microsyst. Nanoeng. 2024, 10, 110. [Google Scholar] [CrossRef]
- Zhang, Z.; Yoshikawa, A.; Kushimoto, M.; Aoto, K.; Sasaoka, C.; Amano, H. Impact of unintentionally formed compositionally graded layer on carrier injection efficiency in AlGaN-based deep ultraviolet laser diodes. Appl. Phys. Lett. 2024, 124, 061109. [Google Scholar] [CrossRef]
- Carey IV, P.H.; Ren, F.; Bae, J.; Kim, J.; Pearton, S.J. Proton Irradiation of High Aluminum Content AlGaN Polarization Doped Field Effect Transistors. ECS J. Solid State Sci. Technol. 2020, 9, 025003. [Google Scholar] [CrossRef]
- Baca, A.G.; Armstrong, A.M.; Klein, B.A.; Allerman, A.A.; Douglas, E.A.; Kaplar, R.J. Al-rich AlGaN based transistors. J. Vac. Sci. Technol. A 2020, 38, 020803. [Google Scholar] [CrossRef]
- Klein, B.A.; Allerman, A.A.; Baca, A.G.; Nordquist, C.D.; Armstrong, A.M.; Van Heukelom, M.; Rice, A.; Patel, V.; Rosprim, M.; Caravello, L.; et al. AlGaN High Electron Mobility Transistor for High-Temperature Logic. J. Microelectron. Electron. Packag. 2023, 20, 1–8. [Google Scholar] [CrossRef]
- Bassaler, J.; Mehta, J.; Abid, I.; Konczewicz, L.; Juillaguet, S.; Contreras, S.; Rennesson, S.; Tamariz, S.; Nemoz, M.; Semond, F.; et al. Al-Rich AlGaN Channel High Electron Mobility Transistors on Silicon: A Relevant Approach for High Temperature Stability of Electron Mobility. Adv. Electron. Mater. 2024, 2400069. [Google Scholar] [CrossRef]
- Papamichail, A.; Persson, A.R.; Richter, S.; Stanishev, V.; Armakavicius, N.; Kühne, P.; Guo, S.; Persson, P.O.Å.; Paskov, P.P.; Rorsman, N.; et al. Impact of Al profile in high-Al content AlGaN/GaN HEMTs on the 2DEG properties. Appl. Phys. Lett. 2024, 125, 123505. [Google Scholar] [CrossRef]
- Du, H.; Hao, L.; Liu, Z.; Song, Z.; Zhang, Y.; Dang, K.; Zhou, J.; Ning, J.; Li, Z.; Zhang, J.; et al. High-Al-composition AlGaN/GaN MISHEMT on Si with fT of 320 GHz. Sci. China Inf. Sci. 2024, 67, 169402. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, X.; Fan, A.; Chen, H.; Li, C.; Feng, Z.C.; Lyu, J.; Zhuang, Z.; Hu, G.; Cui, Y. Characterization of optical properties and thermo-optic effect for non-polar AlGaN thin films using spectroscopic ellipsometry. J. Phys. D Appl. Phys. 2020, 53, 205104. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Q.X.; Wan, L.Y.; Kucukgok, B.; Ferguson, I.T.; Zhang, X.; Feng, Z.C.; Lu, N. Composition and Temperature Dependent Optical Properties of AlxGa1−xN alloy by Spectroscopic Ellipsometry. Appl. Surf. Sci. 2017, 421, 389–396. [Google Scholar] [CrossRef]
- Guo, W.; Chen, L.; Xu, H.; Qian, Y.; Sheikhi, M.; Hoo, J.; Guo, S.; Xu, L.; Liu, J.; Alqatari, F.; et al. Revealing the surface electronic structures of AlGaN deep ultraviolet multiple-quantum-wells with lateral polarity domains. Photonics Res. 2020, 8, 812–818. [Google Scholar] [CrossRef]
- Yin, J.; Chen, D.; Yang, H.; Liu, Y.; Talwar, D.N.; He, T.; Ferguson, I.T.; He, K.; Wan, L.; Feng, Z.C. A comparative study of multiple spectroscopies for AlN thin films grown on sapphire and 6H-SiC by metal organic chemical vapor deposition. J. Alloys Compd. 2021, 857, 157487. [Google Scholar] [CrossRef]
- Feng, Z.C. Raman Scattering on Emerging Semiconductors and Oxides; CRC Press: London, UK; Taylor & Francis Group: New York, NY, USA, 2024; Chapter 9; p. 180. ISBN 9781032638874. Available online: www.routledge.com/9781032638874 (accessed on 1 September 2024).
- Pushkareva, S.S.; Grekhovb, M.M.; Zenchenko, N.V. X-Ray Diffraction Analysis of Features of the Crystal Structure of GaN/Al0.32Ga0.68N HEMT-Heterostructures by the Williamson–Hall Method. Semiconductors 2018, 52, 734–738. [Google Scholar] [CrossRef]
- Endo, Y.; Sato, T.; Takita, A.; Kawamura, Y.; Yamamoto, M. Magnetic, Electrical Properties, and Structure of Cr–AlN and Mn–AlN Thin Films Grown on Si Substrates. IEEE Trans. Magn. 2005, 41, 2718–2720. [Google Scholar] [CrossRef]
- Wei, W.; Peng, Y.; Yang, Y.; Xiao, K.; Maraj, M.; Yang, J.; Wang, Y.; Sun, W. Study of Defects and Nano-patterned Substrate Regulation Mechanism in AlN Epilayers. Nanomaterials 2022, 12, 3937. [Google Scholar] [CrossRef]
- Talwar, D.N.; Becla, P. Assessment of optical phonons in BeTe, BexZn1-xTe, p-BeTe epilayers and BeTe/ZnTe/GaAs (001) superlattices. Appl. Phys. A 2022, 128, 702. [Google Scholar] [CrossRef]
- Talwar, D.N.; Haraldsen, J.T. Simulations of Infrared Reflectivity and Transmission Phonon Spectra for Undoped and Doped GeC/Si (001). Nanomaterials 2024, 14, 1439. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, T.; Kawaguchi, Y.; Tsukamoto, T.; Andoh, H.; Yamaguchi, M.; Hiramatsu, K. Raman Scattering Study of InGaN Grown by Metalorganic Vapor Phase Epitaxy on (0001) Sapphire Substrates. Jpn. J. Appl. Phys. 2001, 40, 5955–5958. [Google Scholar] [CrossRef]
- Havel, M.; Baron, D.; Colomban, P. ‘Smart’ Raman/Rayleigh imaging of nanosized SiC materials using the spatial correlation model. J. Mater. Sci. 2004, 39, 6183–6190. [Google Scholar] [CrossRef]
- Katsikini, M.; Arvanitidis, J.; Christofilos, D.; Ves, S.; Adikimenakis, A.; Georgakilas, A. Raman scattering of InxAl1-xN alloys with 0.2 < x < 0.9. Phys. Status Solidi C 2010, 7, 76–79. [Google Scholar] [CrossRef]
- Rodrigues, A.D.; de Godoy, M.P.F.; Mietze, C.; As, D.J. Phonon localization in cubic GaN/AlN superlattices. Solid State Commun. 2014, 186, 18–22. [Google Scholar] [CrossRef]
- Ning, J.Q.; Zheng, C.C.; Zheng, L.X.; Xu, S.J. Beyond spatial correlation effect in micro-Raman light scattering: An example of zinc-blende GaN/GaAs hetero-interface. J. Appl. Phys. 2015, 118, 073101. [Google Scholar] [CrossRef]
- Liu, B.; Xu, F.; Wang, J.; Lang, J.; Wang, L.; Fang, X.; Yang, X.; Kang, X.; Wang, X.; Qin, Z.; et al. Correlation between electrical properties and growth dynamics for Si-doped Al-rich AlGaN grown by metal-organic chemical vapor deposition. Micro Nanostructures 2022, 163, 107141. [Google Scholar] [CrossRef]
- Li, D.; Liu, S.; Qian, Z.; Liu, Q.; Zhou, K.; Liu, D.; Sheng, S.; Sheng, B.; Liu, F.; Chen, Z.; et al. Deep-Ultraviolet Micro-LEDs Exhibiting High Output Power and High Modulation Bandwidth Simultaneously. Adv. Mater. 2022, 34, 2109765. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, X.; He, J.; Chen, S.; Fan, A.; Pan, J.; Chen, D.; Feng, Z.C.; Sun, Q.; Chang, J.; et al. Improved optical properties of nonpolar AlGaN-based multiple quantum wells emitting at 280 nm. IEEE Photonics J. 2021, 13, 2300107. [Google Scholar] [CrossRef]
- Shigefusa, F. Chichibu, Takeyoshi Onuma, Kouji Hazu, and Akira Uedono, Time-resolved luminescence studies on AlN and high AlN mole fraction AlGaN alloys. Phys. Status Solidi C 2013, 10, 501–506. [Google Scholar] [CrossRef]
- Lee, J.W.; Ha, G.; Park, J.; Song, H.G.; Park, J.Y.; Lee, J.; Cho, Y.-H.; Lee, J.-L.; Kim, J.K.; Kim, J.K. AlGaN Deep-Ultraviolet Light-Emitting Diodes with Localized Surface Plasmon Resonance by a High-Density Array of 40 nm Al Nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 36339–36346. [Google Scholar] [CrossRef] [PubMed]
- Shan, M.; Zhang, Y.; Tian, M.; Lin, R.; Jiang, J.; Zheng, Z.; Zhao, Y.; Lu, Y.; Feng, Z.C.; Guo, W.; et al. Transverse Electric Lasing at a Record Short Wavelength 244.63 nm from GaN Quantum Wells with Weak Exciton Localization. ACS Photonics 2021, 8, 1264–1270. [Google Scholar] [CrossRef]
Sample Name (x%) | A35 (35.0%) | A71 (71.4%) | A81 (81.1%) | A87 (87.7%) |
---|---|---|---|---|
AlGaN Peak 2θ (0002) (°) | 35.077 | 35.749 | 35.749 | 35.884 |
AlGaN FWHM 2θ (0002) (°) | 0.126 | 0.129 | 0.129 | 0.137 |
AlGaN β: (2θFWHM*π/180, Rad) | 0.002198 | 0.002179 | 0.002179 | 0.002913 |
AlGaN β2 (×10−6) | 4.83 | 4.75 | 4.75 | 8.49 |
AlGaN N (×1018 cm−3) | 4.12 | 4.05 | 4.05 | 7.24 |
Sample Name (x%) | A71 (71.4%) | A81 (81.1%) | A87 (87.7%) |
---|---|---|---|
AlN Peak 2θ (0002) (°) | 36.070 | 36.070 | 36.094 |
AlN FWHM 2θ (0002) (°) | 0.157 | 0.157 | 0.141 |
AlN β: (2θFWHM*π/180, Rad) | 0.002739 | 0.002739 | 0.002460 |
AlN β2 (×10−6) | 7.50 | 7.50 | 6.05 |
AlN N (×1018 cm−3) | 6.93 | 6.93 | 5.59 |
Sample Name (x%) | A60 (60.2%) | A71 (71.4%) | A75 (75.3%) | A81 (81.1%) | A87 (87.7%) |
---|---|---|---|---|---|
A (cm−1) | 646.6 | 651.6 | 649.6 | 650.5 | 657.1 |
B (cm−1) | 103 | 107 | 109 | 110 | 111 |
L (Å) | 10 | 12 | 13 | 13.5 | 15 |
Г0 (cm−1) | 22 | 18 | 19 | 19.5 | 20 |
Sample Name (x%) | A60 (6.2%) | A71 (71.4%) | A75 (75.3%) | A81 (81.1%) | A87 (87.7%) |
---|---|---|---|---|---|
A (cm−1) | 599 | 614.7 | 614.9 | 619.2 | 638.5 |
B (cm−1) | 108 | 108.5 | 109 | 110 | 112 |
L (Å) | 12 | 13 | 13.5 | 14 | 14.5 |
Г0 (cm−1) | 25 | 26 | 26.5 | 27 | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Z.C.; Tian, M.; Zhang, X.; Nafisa, M.T.; Liu, Y.; Yiin, J.; Klein, B.; Ferguson, I. Deep Ultraviolet Excitation Photoluminescence Characteristics and Correlative Investigation of Al-Rich AlGaN Films on Sapphire. Nanomaterials 2024, 14, 1769. https://doi.org/10.3390/nano14211769
Feng ZC, Tian M, Zhang X, Nafisa MT, Liu Y, Yiin J, Klein B, Ferguson I. Deep Ultraviolet Excitation Photoluminescence Characteristics and Correlative Investigation of Al-Rich AlGaN Films on Sapphire. Nanomaterials. 2024; 14(21):1769. https://doi.org/10.3390/nano14211769
Chicago/Turabian StyleFeng, Zhe Chuan, Ming Tian, Xiong Zhang, Manika Tun Nafisa, Yao Liu, Jeffrey Yiin, Benjamin Klein, and Ian Ferguson. 2024. "Deep Ultraviolet Excitation Photoluminescence Characteristics and Correlative Investigation of Al-Rich AlGaN Films on Sapphire" Nanomaterials 14, no. 21: 1769. https://doi.org/10.3390/nano14211769
APA StyleFeng, Z. C., Tian, M., Zhang, X., Nafisa, M. T., Liu, Y., Yiin, J., Klein, B., & Ferguson, I. (2024). Deep Ultraviolet Excitation Photoluminescence Characteristics and Correlative Investigation of Al-Rich AlGaN Films on Sapphire. Nanomaterials, 14(21), 1769. https://doi.org/10.3390/nano14211769