Novel Ag-Bridged Z-Scheme CdS/Ag/Bi2WO6 Heterojunction: Excellent Photocatalytic Performance and Insight into the Underlying Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Bi2WO6
2.2. Preparation of Ag/Bi2WO6
2.3. Preparation of CdS/Ag/Bi2WO6
2.4. Characterization of Photocatalysts
2.5. Photocatalytic Experiments
2.6. Photoelectrochemical Measurements
3. Results and Discussion
3.1. Crystal Structure Analysis
3.2. Morphology Characterization
3.3. Optical Properties
3.4. Photocatalytic Performances of the Samples
3.5. Photocatalytic Mechanism of CdS/Ag/Bi2WO6 Heterojunction Photocatalyst
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Mück-Lichtenfeld, C.; Studer, A. Photocatalytic phosphine-mediated water activation for radical hydrogenation. Nature 2023, 619, 506–513. [Google Scholar] [CrossRef]
- Bie, C.; Yu, H.; Cheng, B.; Ho, W.; Fan, J.; Yu, J. Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst. Adv. Mater. 2021, 33, 2003521. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Xue, Y.; Ma, Q.; Chen, Y.; Yuan, S.; Fan, J. Recent Advances in Carbon-Based Materials for Adsorptive and Photocatalytic Antibiotic Removal. Nanomaterials 2022, 12, 4045. [Google Scholar] [CrossRef] [PubMed]
- Poudel, M.B.; Logeshwaran, N.; Kim, A.R.; Karthikeyan, S.C.; Subramanian, V.; Dong, J.Y. Integrated core-shell assembly of Ni3S2 nanowires and CoMoP nanosheets as highly efficient bifunctional electrocatalysts for overall water splitting. J. Alloys Compd. 2023, 960, 170678. [Google Scholar] [CrossRef]
- Sanakousar, F.M.; Vidyasagar, C.C.; Jiménez-Pérez, V.M.; Prakash, K. Recent progress on visible-light-driven metal and non-metal doped ZnO nanostructures for photocatalytic degradation of organic pollutants. Mat. Sci. Semicon. Proc. 2022, 140, 106390. [Google Scholar] [CrossRef]
- Qi, Y.; Zhao, S.; Jiang, X.; Kang, Z.; Gao, S.; Liu, W.; Shen, Y. Visible-Light-Driven BiOBr-TiO2-Attapulgite Photocatalyst with Excellent Photocatalytic Activity for Multiple Xanthates. Catalysts 2023, 13, 1504. [Google Scholar] [CrossRef]
- Poudel, M.B.; Yu, C.; Kim, H.J. Synthesis of conducting bifunctional polyaniline@Mn-TiO2 nanocomposites for supercapacitor electrode and visible light driven photocatalysis. Catalysts 2020, 10, 546. [Google Scholar] [CrossRef]
- Wang, F.; Li, W.; Gu, S.; Li, H.; Wu, W.; Liu, X. Samarium and nitrogen Co-doped Bi2WO6 photocatalysts: Synergistic effect of Sm3+/Sm2+ redox centers and N-doped level for enhancing visible-light photocatalytic activity. Chem. Eur. J. 2016, 22, 12859–12867. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Gao, H.; Liu, J. A Visible-Light-Active CuS/MoS2/Bi2WO6 Aptamer Sensitively Detects the Non-Steroidal Anti-Inflammatory Drug Diclofenac. Nanomaterials 2022, 12, 2834. [Google Scholar] [CrossRef]
- Liu, X.; Gu, S.; Zhao, Y.; Zhou, G.; Li, W. BiVO4, Bi2WO6 and Bi2MoO6 photocatalysis: A brief review. J. Mater. Sci. Technol. 2020, 56, 45–68. [Google Scholar] [CrossRef]
- Chen, T.; Liu, L.; Hu, C.; Huang, H. Recent advances on Bi2WO6-based photocatalysts for environmental and energy applications. Chin. J. Catal. 2021, 42, 1413–1438. [Google Scholar] [CrossRef]
- Shang, Y.; Cui, Y.; Shi, R.; Yang, P. Effect of acetic acid on morphology of Bi2WO6 with enhanced photocatalytic activity. Mat. Sci. Semicon. Proc. 2019, 89, 240–249. [Google Scholar] [CrossRef]
- Campos, W.E.O.; Nobre, F.X.; da Rocha Filho, G.N.; da Silva, M.A.R.; da Costa, C.E.F.; do Nascimento, L.A.S.; Zamian, J.R. High Photocatalytic Activity under Visible Light for a New Morphology of Bi2WO6 Microcrystals. Catalysts 2019, 9, 667. [Google Scholar] [CrossRef]
- Chang, C.; Chen, J.; Lin, K.; Wei, Y.; Chao, P.; Huang, C. Enhanced visible-light-driven photocatalytic degradation by metal wire-mesh supported Ag/flower-like Bi2WO6 photocatalysts. J. Alloys Compd. 2020, 813, 152186. [Google Scholar] [CrossRef]
- Pinchujit, S.; Phuruangrat, A.; Wannapop, S.; Sakhon, T.; Kuntalue, B.; Thongtem, T.; Thongtem, S. Synthesis and characterization of heterostructure Pt/Bi2WO6 nanocomposites with enhanced photodegradation efficiency induced by visible radiation. Solid State Sci. 2022, 134, 107064. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Xiong, Z.; Gao, T.; Gong, B.; Liu, P.; Liu, J.; Zhang, J. Elemental mercury removal by I−-doped Bi2WO6 with remarkable visible-light-driven photocatalytic oxidation. Appl. Catal. B 2021, 282, 119534. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, H.; Zhai, R.; Zhang, J.; Gao, C.; Qi, K.; Yang, L.; Ma, Q. Recent Progress in Photocatalytic Degradation of Water Pollution by Bismuth Tungstate. Molecules 2023, 28, 8011. [Google Scholar] [CrossRef]
- Kovalevskiy, N.; Cherepanova, S.; Gerasimov, E.; Lyulyukin, M.; Solovyeva, M.; Prosvirin, I.; Kozlov, D.; Selishchev, D. Enhanced Photocatalytic Activity and Stability of Bi2WO6-TiO2-N Nanocomposites in the Oxidation of Volatile Pollutants. Nanomaterials 2022, 12, 359. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Li, W.; Gu, S.; Li, H.; Wu, X.; Ren, C.; Liu, X. Facile fabrication of direct Z-scheme MoS2/Bi2WO6 heterojunction photocatalyst with superior photocatalytic performance under visible light irradiation. J. Photoch. Photobio. A 2017, 335, 140–148. [Google Scholar] [CrossRef]
- Qian, X.; Ma, Y.; Arif, M.; Xia, J.; He, G.; Chen, H. Construction of 2D/2D Bi4O5Br2/Bi2WO6 Z-scheme heterojunction for highly efficient photodegradation of ciprofloxacin under visible light. Sep. Purif. Technol. 2023, 316, 123794. [Google Scholar] [CrossRef]
- Zhou, P.; Yu, J.; Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater. 2014, 26, 4920–4935. [Google Scholar] [CrossRef]
- Chen, Y.; Li, R.; Yang, L.; Wang, R.; Li, Z.; Li, T.; Liu, M.; Ramakrishna, S.; Long, Y. Synergistic Effects of Magnetic Z-Scheme g-C3N4/CoFe2O4 Nanofibres with Controllable Morphology on Photocatalytic Activity. Nanomaterials 2023, 13, 1142. [Google Scholar] [CrossRef]
- Feng, S.; Chen, T.; Liu, Z.; Shi, J.; Yue, X.; Li, Y. Z-scheme CdS/CQDs/g-C3N4 composites with visible-near-infrared light response for efficient photocatalytic organic pollutant degradation. Sci. Total Environ. 2020, 704, 135404. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, Q.; Bai, B.; Li, Y.; He, C. Novel all-solid-state Z-scheme SnO2/Pt/In2O3 photocatalyst with boosted photocatalytic performance on water splitting and 2, 4-dichlorophenol degradation under visible light. Chem. Eng. J. 2020, 390, 124518. [Google Scholar] [CrossRef]
- Qian, L.; Hou, Y.; Yu, Z.; Li, M.; Li, F.; Sun, L.; Luo, W.; Pan, G. Metal-induced Z-scheme CdS/Ag/g-C3N4 photocatalyst for enhanced hydrogen evolution under visible light: The synergy of MIP effect and electron mediator of Ag. Mol. Catal. 2018, 458, 43–51. [Google Scholar] [CrossRef]
- Ou, M.; Wan, S.; Zhong, Q.; Zhang, S.; Song, Y.; Guo, L.; Cai, W.; Xu, Y. Hierarchical Z-scheme photocatalyst of g-C3N4@Ag/BiVO4(040) with enhanced visible-light-induced photocatalytic oxidation performance. Appl. Catal. B 2018, 221, 97–107. [Google Scholar] [CrossRef]
- Wan, J.; Xue, P.; Wang, R.; Liu, L.; Liu, E.; Bai, X.; Fan, J.; Hu, X. Synergistic effects in simultaneous photocatalytic removal of Cr (VI) and tetracycline hydrochloride by Z-scheme Co3O4/Ag/Bi2WO6 heterojunction. Appl. Surf. Sci. 2019, 483, 677–687. [Google Scholar] [CrossRef]
- Bao, S.; Wu, Q.; Chang, S.; Tian, B.; Zhang, Z. Z-scheme CdS–Au–BiVO4 with enhanced photocatalytic activity for organic contaminant decomposition. Catal. Sci. Technol. 2017, 7, 124–132. [Google Scholar] [CrossRef]
- Wu, M.; Ding, T.; Wang, Y.; Zhao, W.; Xian, H.; Tian, Y.; Zhang, T.; Li, X. Rational construction of plasmon Au assisted ferroelectric-BaTiO3/Au/g-C3N4 Z-scheme system for efficient photocatalysis. Catal. Today 2020, 355, 311–318. [Google Scholar] [CrossRef]
- Lu, D.; Wang, H.; Zhao, X.; Kondamareddy, K.K.; Ding, J.; Li, C.; Fang, P. Highly efficient visible-light-induced photoactivity of Z-scheme g-C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen. ACS Sustain. Chem. Eng. 2017, 5, 1436–1445. [Google Scholar] [CrossRef]
- Zhang, Y.; Chai, C.; Zhang, X.; Liu, J.; Duan, D.; Fan, C.; Wang, Y. Construction of Pt-decorated g-C3N4/Bi2WO6 Z-scheme composite with superior solar photocatalytic activity toward rhodamine B degradation. Inorg. Chem. Commun. 2019, 100, 81–91. [Google Scholar] [CrossRef]
- Ye, F.; Li, H.; Yu, H.; Chen, S.; Quan, X. Constructing BiVO4-Au@CdS photocatalyst with energic charge-carrier-separation capacity derived from facet induction and Z-scheme bridge for degradation of organic pollutants. Appl. Catal. B 2018, 227, 258–265. [Google Scholar] [CrossRef]
- Sivakumar, S.; Thangadurai, T.D.; Nataraj, D. Role of interfacial AuNPs in solid-state direct Z-scheme MoS2/Au/g-C3N4 heterojunction nanocomposite’s pollutant degradation activity under sunlight. Colloids Surf. A 2023, 667, 131365. [Google Scholar] [CrossRef]
- Xiao, X.; Wei, J.; Yang, Y.; Xiong, R.; Pan, C.; Shi, J. Photoreactivity and mechanism of g-C3N4 and Ag Co-modified Bi2WO6 microsphere under visible light irradiation. ACS Sustain. Chem. Eng. 2016, 4, 3017–3023. [Google Scholar] [CrossRef]
- Gao, B.; Pan, Y.; Chang, Q.; Xi, Z.; Yang, H. Hierarchically Z-scheme photocatalyst of {010} BiVO4/Ag/CdS with enhanced performance in synergistic adsorption-photodegradation of fluoroquinolones in water. Chem. Eng. J. 2022, 435, 134834. [Google Scholar] [CrossRef]
- Chen, R.; Qian, L.; Xu, S.; Wan, S.; Ma, M.; Zhang, L.; Jiang, R. In Situ Fabrication of CdS/Cd(OH)2 for Effective Visible Light-Driven Photocatalysis. Nanomaterials 2023, 13, 2453. [Google Scholar] [CrossRef]
- Ren, Y.; Li, Y.; Pan, G.; Wang, N.; Xing, Y.; Zhang, Z. Recent progress in CdS-based S-scheme photocatalysts. J. Mater. Sci. Technol. 2024, 171, 162–182. [Google Scholar] [CrossRef]
- Prasad, C.; Madkhali, N.; Won, J.S.; Lee, J.E.; Sangaraju, S.; Choi, H.Y. CdS based heterojunction for water splitting: A review. Mater. Sci. Eng. B 2023, 292, 116413. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, F.; Jin, X.; Min, J.; Duan, H.; Li, J.; Wu, Z.; Cao, B. Oxygen Vacancies-Rich S-Cheme BiOBr/CdS Heterojunction with Synergetic Effect for Highly Efficient Light Emitting Diode-Driven Pollutants Degradation. Nanomaterials 2023, 13, 830. [Google Scholar] [CrossRef]
- Yang, L.; Wang, J.; Zhang, Y.; Zhou, B.; Tan, P.; Pan, J. Construction of S-scheme BiOCl/CdS composite for enhanced photocatalytic degradation of antibiotic. J. Mater. Sci. Mater. Electron. 2022, 33, 13303–13315. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Zhai, C. Construction of a novel pn heterojunction CdS QDs/LaMnO3 composite for photodegradation of oxytetracycline. Mat. Sci. Semicon. Proc. 2022, 144, 106568. [Google Scholar] [CrossRef]
- Ge, L.; Liu, J. Efficient visible light-induced photocatalytic degradation of methyl orange by QDs sensitized CdS-Bi2WO6. Appl. Catal. B 2011, 105, 289–297. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, Y.; Liu, F. Preparation and photocatalytic performance of CdS@Bi2WO6 hybrid nanocrystals. J. Alloys Compd. 2021, 889, 161668. [Google Scholar] [CrossRef]
- Su, Y.; Xu, X.; Li, R.; Luo, X.; Yao, H.; Fang, S.; Homewood, K.P.; Huang, Z.; Gao, Y.; Chen, X. Design and fabrication of a CdS QDs/Bi2WO6 monolayer S-scheme heterojunction configuration for highly efficient photocatalytic degradation of trace ethylene in air. Chem. Eng. J. 2022, 429, 132241. [Google Scholar] [CrossRef]
- Zhao, B.; Shao, N.; Chen, X.; Ma, J.; Gao, Y.; Chen, X. Construction of novel type II heterojunction WO3/Bi2WO6 and Z-scheme heterojunction CdS/Bi2WO6 photocatalysts with significantly enhanced photocatalytic activity for the degradation of rhodamine B and reduction of Cr (VI). Colloids Surf. A 2023, 663, 131072. [Google Scholar] [CrossRef]
- Pan, J.; Liu, J.; Zuo, S.; Khan, U.A.; Yu, Y.; Li, B. Structure of Z-scheme CdS/CQDs/BiOCl heterojunction with enhanced photocatalytic activity for environmental pollutant elimination. Appl. Surf. Sci. 2018, 444, 177–186. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, J.; Wang, L.; Han, M.; Zhang, M.; Wang, H.; Huang, H.; Liu, Y.; Kang, Z. Carbon dots as solid-state electron mediator for BiVO4/CDs/CdS Z-scheme photocatalyst working under visible light. Appl. Catal. B 2017, 206, 501–509. [Google Scholar] [CrossRef]
- Chen, F.; Yang, Q.; Wang, Y.; Zhao, J.; Wang, D.; Li, X.; Guo, Z.; Wang, H.; Deng, Y.; Niu, C.; et al. Novel ternary heterojunction photcocatalyst of Ag nanoparticles and g-C3N4 nanosheets co-modified BiVO4 for wider spectrum visible-light photocatalytic degradation of refractory pollutant. Appl. Catal. B 2017, 205, 133–147. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, B.; Ma, J.; Liu, L.; Luo, H.; Wang, W. The BiOBr/Bi/Bi2WO6 photocatalyst with SPR effect and Z-scheme heterojunction synergistically degraded RhB under visible light. Opt. Mater. 2021, 122, 111641. [Google Scholar] [CrossRef]
- Hu, Y.; Hao, X.; Cui, Z.; Zhou, J.; Chu, S.; Wang, Y.; Zou, Z. Enhanced photocarrier separation in conjugated polymer engineered CdS for direct Z-scheme photocatalytic hydrogen evolution. Appl. Catal. B 2020, 260, 118131. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Tang, L.; Zeng, G.; Wang, J.; Zhu, Y.; Feng, C.; Deng, Y.; He, W. Ultrathin Bi2WO6 nanosheets loaded g-C3N4 quantum dots: A direct Z-scheme photocatalyst with enhanced photocatalytic activity towards degradation of organic pollutants under wide spectrum light irradiation. J. Colloid Interf. Sci. 2019, 539, 654–664. [Google Scholar] [CrossRef]
- Li, K.; Chen, M.; Chen, L.; Xue, W.; Pan, W.; Han, Y. Investigating the Performance and Stability of Fe3O4/Bi2MoO6/g-C3N4 Magnetic Photocatalysts for the Photodegradation of Sulfonamide Antibiotics under Visible Light Irradiation. Processes 2023, 11, 1749. [Google Scholar] [CrossRef]
- Nan, R.; Liu, S.; Zhai, M.; Zhu, M.; Sun, X.; Chen, Y.; Pang, Q.; Zhang, J. Facile Synthesis of Cu-Doped ZnO Nanoparticles for the Enhanced Photocatalytic Disinfection of Bacteria and Fungi. Molecules 2023, 28, 7232. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Y.; Zhang, Z.; Liao, S.; Deng, Y.; Wang, X.; Ye, Q.; Wang, K. Facile synthesis of Bi2WO6/Bi2MoO6 Z-scheme heterojunction for dye degradation and Cr (VI) reduction. J. Mol. Liq. 2023, 383, 122164. [Google Scholar] [CrossRef]
- Yavuz, C.; Erten-Ela, S. Solar light-responsive α-Fe2O3/CdS/g-C3N4 ternary photocatalyst for photocatalytic hydrogen production and photodegradation of methylene blue. J. Alloys Compd. 2022, 908, 164584. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Jiang, L.; Zhang, G.; Ye, Z.; He, Q.; Li, J.; Li, P.; Chen, Y.; Zhou, X.; Shang, R. Novel Ag-Bridged Z-Scheme CdS/Ag/Bi2WO6 Heterojunction: Excellent Photocatalytic Performance and Insight into the Underlying Mechanism. Nanomaterials 2024, 14, 315. https://doi.org/10.3390/nano14030315
Wang F, Jiang L, Zhang G, Ye Z, He Q, Li J, Li P, Chen Y, Zhou X, Shang R. Novel Ag-Bridged Z-Scheme CdS/Ag/Bi2WO6 Heterojunction: Excellent Photocatalytic Performance and Insight into the Underlying Mechanism. Nanomaterials. 2024; 14(3):315. https://doi.org/10.3390/nano14030315
Chicago/Turabian StyleWang, Fangzhi, Lihua Jiang, Guizhai Zhang, Zixian Ye, Qiuyue He, Jing Li, Peng Li, Yan Chen, Xiaoyan Zhou, and Ran Shang. 2024. "Novel Ag-Bridged Z-Scheme CdS/Ag/Bi2WO6 Heterojunction: Excellent Photocatalytic Performance and Insight into the Underlying Mechanism" Nanomaterials 14, no. 3: 315. https://doi.org/10.3390/nano14030315
APA StyleWang, F., Jiang, L., Zhang, G., Ye, Z., He, Q., Li, J., Li, P., Chen, Y., Zhou, X., & Shang, R. (2024). Novel Ag-Bridged Z-Scheme CdS/Ag/Bi2WO6 Heterojunction: Excellent Photocatalytic Performance and Insight into the Underlying Mechanism. Nanomaterials, 14(3), 315. https://doi.org/10.3390/nano14030315