Oral Toxicity and Intestinal Transport Mechanism of Colloidal Gold Nanoparticle-Treated Red Ginseng
Abstract
:1. Introduction
2. Results
2.1. Characterization
2.2. Body and Organ Weights, Food Intake and Water Consumption
2.3. Hematology, Coagulation Analysis and Serum Biochemistry
2.4. Histopathology
2.5. Tissue Distribution
2.6. Intestinal Transport Mechanism
3. Discussion
4. Materials and Methods
4.1. Materials and Characterization
4.2. Animals
4.3. Oral Toxicity and Tissue Distribution
4.4. Au Quantification in Biolgical Matrices
4.5. Intestinal Transport Mechanism
4.5.1. 3D Cell Culture for FAE Model
4.5.2. 3D Cell Culture for Intestinal Epithelial Monolayers
4.6. Statistical Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mohanpuria, P.; Rana, N.K.; Yadav, S.K. Biosynthesis of nanoparticles: Technological concepts and future applications. J. Nanopart. Res. 2008, 10, 507–517. [Google Scholar] [CrossRef]
- Sozer, N.; Kokini, J.L. Nanotechnology and its applications in the food sector. Trends Biotechnol. 2009, 27, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Kole, C.; Kole, P.; Randunu, K.M.; Choudhary, P.; Podila, R.; Ke, P.C.; Rao, A.M.; Marcus, R.K. Nanobiotechnology can boost crop production and quality: First evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol. 2013, 13, 37. [Google Scholar] [CrossRef] [PubMed]
- Khodakovskaya, M.V.; de Silva, K.; Biris, A.S.; Dervishi, E.; Villagarcia, H. Carbon Nanotubes Induce Growth Enhancement of Tobacco Cells. ACS Nano 2012, 6, 2128–2135. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.; Varghese, S.H.; Nair, B.G.; Maekawa, T.; Yoshida, Y.; Kumar, D.S. Nanoparticulate material delivery to plants. Plant Sci. 2010, 179, 154–163. [Google Scholar] [CrossRef]
- Sonkaria, S.; Ahn, S.H.; Khare, V. Nanotechnology and its impact on food and nutrition: A review. Recent Pat. Food Nutr. Agric. 2012, 4, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Sekhon, B.S. Nanotechnology in agri-food production: An overview. Nanotechnol. Sci. Appl. 2014, 7, 31–53. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Lombi, E.; Zhao, F.J.; Kopittke, P.M. Nanotechnology: A New Opportunity in Plant Sciences. Trends Plant Sci. 2016, 21, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Hong, F.; Liu, C.; Zheng, L.; Su, M.; Wu, X.; Yang, F.; Wu, C.; Yang, P. Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: Inducing complex of rubisco-rubisco activase. Biol. Trace Elem. Res. 2006, 111, 239–253. [Google Scholar] [CrossRef]
- Liu, X.M.; Zhang, F.D.; Zhang, S.Q.; He, X.S.; Fang, R.; Feng, Z.; Wang, Y. Effects of nano-ferric oxide on the growth and nutrients adsorption of peanut. Plant Nutr. Fert. Sci. 2010, 11, 14–18. [Google Scholar]
- Khodakovskaya, M.; Dervishi, E.; Mahmood, M.; Xu, Y.; Li, Z.R.; Watanabe, F.; Biris, A.S. Carbon Nanotubes Are Able To Penetrate Plant Seed Coat and Dramatically Affect Seed Germination and Plant Growth. ACS Nano 2009, 3, 3221–3227. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Hong, F.; You, W.; Liu, C.; Gao, F.; Wu, C.; Yang, P. Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol. Trace Elem. Res. 2006, 110, 179–190. [Google Scholar] [CrossRef]
- Khodakovskaya, M.V.; de Silva, K.; Nedosekin, D.A.; Dervishi, E.; Biris, A.S.; Shashkov, E.V.; Galanzha, E.I.; Zharov, V.P. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc. Natl. Acad. Sci. USA 2011, 108, 1028–1033. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Su, M.Y.; Chao, L.; Liang, C.; Hao, H.; Xiao, W.; Liu, X.Q.; Fan, Y.; Gao, F.Q.; Hong, F.S. Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biol. Trace Elem. Res. 2007, 119, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Rico, C.M.; Majumdar, S.; Duarte-Gardea, M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 2011, 59, 3485–3498. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.M.; Fugetsu, B. Multi-walled carbon nanotubes interact with cultured rice cells: Evidence of a self-defense response. J. Biomed. Nanotechnol. 2007, 3, 285–288. [Google Scholar] [CrossRef]
- Wang, H.H.; Kou, X.M.; Pei, Z.G.; Xiao, J.Q.; Shan, X.Q.; Xing, B.S. Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 2011, 5, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.H.; Xing, B.S. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environ. Pollut. 2007, 150, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.M.; An, Y.J.; Yoon, H.; Kweon, H.S. Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): Plant agar test for water-insoluble nanoparticles. Environ. Toxicol. Chem. 2008, 27, 1915–1921. [Google Scholar] [CrossRef] [PubMed]
- Barrena, R.; Casals, E.; Colon, J.; Font, X.; Sanchez, A.; Puntes, V. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 2009, 75, 850–857. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Guleria, P.; Kumar, V.; Yadav, S.K. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci. Total Environ. 2013, 461, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Hwang, Y.G.; Lee, T.G.; Jin, C.R.; Cho, C.H.; Jeong, H.Y.; Kim, D.O. Use of gold nanoparticle fertilizer enhances ginsenoside contents and anti-inflammatory effects of red ginseng. J. Microbiol. Biotechnol. 2016, 26, 1668–1674. [Google Scholar] [CrossRef] [PubMed]
- Jo, M.R.; Bae, S.H.; Go, M.R.; Kim, H.J.; Hwang, Y.G.; Choi, S.J. Toxicity and Biokinetics of Colloidal Gold Nanoparticles. Nanomaterials 2015, 5, 835–850. [Google Scholar] [CrossRef]
- Des Rieux, A.; Fievez, V.; Theate, I.; Mast, J.; Preat, V.; Schneider, Y.J. An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells. Eur. J. Pharm. Sci. 2007, 30, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Hilgendorf, C.; Spahn-Langguth, H.; Regardh, C.G.; Lipka, E.; Amidon, G.L.; Langguth, P. Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: Permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. J. Pharm. Sci. 2000, 89, 63–75. [Google Scholar] [CrossRef]
- Alvarez-Hernandez, X.; Nichols, G.M.; Glass, J. Caco-2 cell line: A system for studying intestinal iron transport across epithelial cell monolayers. Biochim. Biophys. Acta 1991, 1070, 205–208. [Google Scholar] [CrossRef]
- Beier, R.; Gebert, A. Kinetics of particle uptake in the domes of Peyer’s patches. Am. J. Physiol. 1998, 275, G130–G137. [Google Scholar] [PubMed]
- Gebert, A.; Bartels, H. Ultrastructure and protein transport of M cells in the rabbit cecal patch. Anat. Rec. 1995, 241, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Raiman, J.; Tormalehto, S.; Yritys, K.; Junginger, H.E.; Monkkonen, J. Effects of various absorption enhancers on transport of clodronate through Caco-2 cells. Int. J. Pharm. 2003, 261, 129–136. [Google Scholar] [CrossRef]
- Fleischer, A.; O’Neill, M.A.; Ehwald, R. The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the Pectic Polysaccharide Rhamnogalacturonan II. Plant Physiol. 1999, 121, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Navarro, E.; Baun, A.; Behra, R.; Hartmann, N.B.; Filser, J.; Miao, A.J.; Quigg, A.; Santschi, P.H.; Sigg, L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 2008, 17, 372–386. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.N. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ. Inter. 2006, 32, 967–976. [Google Scholar] [CrossRef] [PubMed]
- Smith, I.; Williamson, E.M.; Putnam, S.; Farrimond, J.; Whalley, B.J. Effects and mechanisms of ginseng and ginsenosides on cognition. Nutr. Rev. 2014, 72, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.S.; Che, C.M.; Leung, K.W. Recent advances in ginseng as cancer therapeutics: A functional and mechanistic overview. Nat. Prod. Rep. 2015, 32, 256–272. [Google Scholar] [CrossRef] [PubMed]
- Feliu, N.; Docter, D.; Heine, M.; Del Pino, P.; Ashraf, S.; Kolosnjaj-Tabi, J.; Macchiarini, P.; Nielsen, P.; Alloyeau, D.; Gazeau, F.; et al. In vivo degeneration and the fate of inorganic nanoparticles. Chem. Soc. Rev. 2016, 45, 2440–2457. [Google Scholar] [CrossRef] [PubMed]
Type of Ginseng | Rg1 | Re | Rf | Rg2 | Rb1 | Rb3 | Rd | Total |
---|---|---|---|---|---|---|---|---|
Untreated ginseng | 1.67 | 1.43 | 0.33 | 0.13 | 2.48 | 0.18 | 0.12 | 6.34 |
Au-NP-treated ginseng | 14.42 | 2.93 | 0.91 | 0.15 | 3.42 | 0.15 | 1.33 | 22.31 |
Organ | Control | Untreated Red Ginseng Extract | G-red Ginseng Extract |
---|---|---|---|
Brain | 0.92 ± 0.07 | 1.03 ± 0.13 | 0.91 ± 0.11 |
Heart | 0.38 ± 0.04 | 0.37 ± 0.04 | 0.37 ± 0.04 |
Kidney | 0.97 ± 0.08 | 1.01 ± 0.11 | 0.89 ± 0.10 |
Large Intestine | 1.49 ± 0.26 | 1.51 ± 0.35 | 1.24 ± 0.29 |
Liver | 4.41 ± 0.20 | 4.93 ± 0.56 | 4.12 ± 0.45 |
Lung | 0.52 ± 0.04 | 0.47 ± 0.18 | 0.55 ± 0.10 |
Ovary | 0.04 ± 0.01 | 0.07 ± 0.01 | 0.05 ± 0.01 |
Small Intestine | 4.27 ± 0.42 | 4.62 ± 0.04 | 3.81 ± 0.32 |
Spleen | 0.28 ± 0.02 | 0.35 ± 0.01 | 0.28 ± 0.04 |
Stomach | 2.23 ± 0.63 | 1.60 ± 0.10 | 1.82 ± 0.30 |
Test Groups | WBC | WBC Differential Counting (%) | RBC | Hb | HCT | MCV | MCH | MCHC | RETI | PLT | PT | APTT | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(103/μL) | NE | LY | MO | EO | BA | (106/μL) | (g/dL) | (%) | (fL) | (pg) | (g/dL) | (%) | (103/μL) | (s) | (s) | |
Control 1 | 5.4 ± 3.2 | 12.2 ± 6.9 | 82.2 ± 7.6 | 1.7 ± 0.3 | 1.8 ± 1.3 | 0.7 ± 0.4 | 6.5 ± 1.9 | 12.8 ± 3.4 | 40.3 ± 11.0 | 62.4 ± 1.6 | 20.0 ± 0.7 | 32.0 ± 0.5 | 3.0 ± 0.2 | 515 ± 571 | 14.0 ± 0.9 | 41.7 ± 4.4 |
Untreated Red Ginseng Extract | 7.8 ± 1.5 | 7.2 ± 1.6 | 87.4 ± 2.2 | 2.1 ± 0.5 | 1.3 ± 0.2 | 0.7 ± 0.3 | 7.7 ± 0.3 | 15.3 ± 0.5 | 47.8 ± 1.4 | 62.5 ± 1.1 | 19.9 ± 0.3 | 31.9 ± 0.2 | 2.4 ± 0.4 | 1104 ± 305 | 13.3 ± 0.5 | 36 ± 8.3 |
Control 2 | 6.0 ± 0.9 | 5.8 ± 1.2 | 88.0 ± 1.4 | 2.1 ± 0.6 | 1.5 ± 0.4 | 0.5 ± 0.3 | 7.1 ± 0.4 | 13.7 ± 0.8 | 47.4 ± 2.6 | 67.1 ± 1.5 | 19.4 ± 0.5 | 28.9 ± 0.2 | 2.2 ± 0.3 | 921 ± 44 | 13.2 ± 0.6 | 23.2 ± 1.9 |
G-red Ginseng Extract | 6.6 ± 1.2 | 7.1 ± 3.5 | 86.6 ± 3.6 | 2.2 ± 0.5 | 1.8 ± 0.4 | 0.6 ± 0.1 | 7.6 ± 0.5 | 14.4 ± 0.8 | 49.4 ± 2.6 | 65.1 ± 1.3 | 19.0 ± 0.4 | 29.2 ± 0.3 | 2.19 ± 0.33 | 890 ± 173 | 14.1 ± 0.9 | 27.4 ± 6.9 |
Test Groups | TP | ALB | A/G | T-BIL | ALP | AST | ALT | CREA | BUN | CHOL | TG | GLU | CA | IP | CK | Na | K | Cl |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(g/dL) | (g/dL) | - | (mg/dL) | (U/L) | (U/L) | (U/L) | (mg/dL) | (mg/dL) | (mg/dL) | (mg/dL) | (mg/dL) | (mg/dL) | (mg/dL) | (IU/L) | (mmol/L) | (mmol/L) | (mmol/L) | |
Control 1 | 6.9 ± 0.2 | 4.3 ± 0.2 | 1.7 ± 0.1 | 0.0 ± 0.0 | 851 ± 218 | 85 ± 4 | 34 ± 5 | 0.5 ± 0.1 | 20.9 ± 2.1 | 96 ± 7 | 113 ± 16 | 366 ± 105 | 12.2 ± 0.8 | 9.6 ± 0.7 | 178 ± 49 | 145.6 ± 1.6 | 6.6 ± 0.7 | 99.7 ± 1.8 |
Untreated Red Ginseng Extract | 8.8 ± 0.0 | 5.0 ± 0.1 | 1.4 ± 0.1 | 0.0 ± 0.0 | 864 ± 115 | 174 ± 21 | 46 ± 11 | 0.5 ± 0.1 | 22.6 ± 2.3 | 93 ± 14 | 106 ± 12 | 461 ± 277 | 12.9 ± 1.0 | 11.8 ± 1.3 | 1735 ± 230 | 141.5 ± 0.8 | 11.0 ± 0.5 | 101.6 ± 2.5 |
Control 2 | 6.5 ± 0.2 | 4.3±0.1 | 2.0 ± 0.0 | 0.0 ± 0.0 | 1116 ± 117 | 76 ± 7 | 37 ± 5 | 0.5 ± 0.1 | 21.4 ± 3.2 | 83 ± 6 | 90 ± 19 | 286 ± 51 | 13.1 ± 0.2 | 9.8 ± 0.7 | 112 ± 10 | 147.5 ± 1.0 | 5.5 ± 0.5 | 97.1 ± 1.2 |
G-red Ginseng Extract | 6.7 ± 0.2 | 4.5±0.1 | 2.0 ± 0.1 | 0.0 ± 0.0 | 904 ± 148 | 77 ± 7 | 26 ± 4 | 0.5 ± 0.1 | 21.4 ± 2.0 | 86 ± 8 | 52 ± 28 | 268 ± 43 | 12.8 ± 0.5 | 9.1 ± 0.9 | 113 ± 18 | 148.4 ± 1.5 | 5.4 ± 0.6 | 98.2 ± 2.7 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, S.-H.; Yu, J.; Go, M.-R.; Kim, H.-J.; Hwang, Y.-G.; Choi, S.-J. Oral Toxicity and Intestinal Transport Mechanism of Colloidal Gold Nanoparticle-Treated Red Ginseng. Nanomaterials 2016, 6, 208. https://doi.org/10.3390/nano6110208
Bae S-H, Yu J, Go M-R, Kim H-J, Hwang Y-G, Choi S-J. Oral Toxicity and Intestinal Transport Mechanism of Colloidal Gold Nanoparticle-Treated Red Ginseng. Nanomaterials. 2016; 6(11):208. https://doi.org/10.3390/nano6110208
Chicago/Turabian StyleBae, Song-Hwa, Jin Yu, Mi-Ran Go, Hyun-Jin Kim, Yun-Gu Hwang, and Soo-Jin Choi. 2016. "Oral Toxicity and Intestinal Transport Mechanism of Colloidal Gold Nanoparticle-Treated Red Ginseng" Nanomaterials 6, no. 11: 208. https://doi.org/10.3390/nano6110208
APA StyleBae, S. -H., Yu, J., Go, M. -R., Kim, H. -J., Hwang, Y. -G., & Choi, S. -J. (2016). Oral Toxicity and Intestinal Transport Mechanism of Colloidal Gold Nanoparticle-Treated Red Ginseng. Nanomaterials, 6(11), 208. https://doi.org/10.3390/nano6110208