A Label-Free Microelectrode Array Based on One-Step Synthesis of Chitosan–Multi-Walled Carbon Nanotube–Thionine for Ultrasensitive Detection of Carcinoembryonic Antigen
Abstract
:1. Introduction
2. Results and Discussion
2.1. Principles of the Electrochemical Measurement
2.2. Optimization of Microelectrode Preparation
2.3. Characteristics of the CS-MWCNT-THI Hybrid Film
2.4. Electrochemical Characteristics of the Immune MEAs
2.5. Analytical Performance of the Immune MEAs
2.6. Selectivity and Repeatability of the Immune MEA
2.7. Analysis of Clinical Serum Samples
3. Materials and Methods
3.1. Apparatus and Reagents
3.2. Fabrication of MEA
3.3. Fabrication of CS-MWCNTs-THI Hybrid Film
3.4. Fabrication of the Electrochemical Immune MEAs
3.5. Electrochemical Measurements
3.6. The Assay Procedure of ELISA
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, R.; Chen, X.; Ma, J.; Ma, Z. Ultrasensitive detection of carcinoembryonic antigen by a simple label-free immunosensor. Sens. Actuators B 2013, 176, 1044–1050. [Google Scholar] [CrossRef]
- Liu, Z.F.; Jin, C.J.; Yu, Z.L.; Zhang, J.; Liu, Y.; Zhao, H.Y.; Jia, B.; Wang, F. Radioimmunotherapy of human colon cancer xenografts with I-131-labeled anti-CEA monoclonal antibody source. Bioconjug. Chem. 2010, 21, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Hawkridge, A.M.; Muddiman, D.C. Mass spectrometry-based biomarker discovery: Toward a global proteome index of individuality. Anal. Chem. 2009, 2, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M. Cancer nanotechnology: Opportunities and challenges. Nature Rev. Cancer 2005, 5, 161–171. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.Y.; Zhu, X.; Xu, M.T.; Xu, J.J.; Chen, H.Y. Gold nanoparticle/DNA/methylene blue nanocomposites for the ultrasensitive electrochemical detection of carcinoembryonic antigen. Anal. Chim. Acta 2011, 56, 9386–9390. [Google Scholar] [CrossRef]
- Distler, M.; Pilarsky, E.; Kersting, S.; Grützmann, R. Preoperative CEA and CA 19-9 are prognostic markers for survival after curative resection for ductal adenocarcinoma of the pancreas-A retrospective tumor marker prognostic study. Int. J. Surg. 2013, 11, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Ma, Z. Electrochemical immunosensor based on nanoporpus gold loading thionine for carcinoembryonic antigen. Anal. Chim. Acta 2013, 780, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.C.; Dong, C.; Ren, J. Highly sensitive homogenous immunoassay of cancer biomarker using silver nanoparticles enhanced fluorescence correlation spectroscopy. Talanta 2010, 81, 1560–1567. [Google Scholar] [CrossRef] [PubMed]
- Song, C.Y.; Wang, Z.Y.; Zhang, R.H. Highly sensitive immunoassay based on Raman reporter-labeled immuno-Au aggregates and SERS-active immune substrate. Biosens. Bioelectron. 2009, 25, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, H.; Luo, J.; Liu, J.; Wang, L.; Fan, Y.; Cai, X. A Novel Label-Free Microfluidic Paper Immunosensor Based on Graphene Nanocomposites for Highly Sensitive Electrochemical Detection of Carcinoembryonic Antigen. Biosens. Bioelectron. 2016, 83, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.T.; Ma, Z.F. A novel label-free amperometric immunosensor for carcinoembryonic antigen based on redox membrane. Biosens. Bioelectron. 2011, 26, 3068–3071. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Tang, D.; Liu, B.; Cui, Y.; Chen, H.; Chen, G. Nanogold-functionalized magnetic beads with redox activity for sensitive electrochemical immunoassay of thyroid-stimulating hormone. Anal. Chim. Acta 2012, 711, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.L.; Chen, H.F.; Hou, L.; Zhang, B.; Liu, B.Q.; Chen, G.N.; Tang, D.P. Nanogold–polyaniline–nanogold microspheres-functionalized molecular tags for sensitive electrochemical immunoassay of thyroid-stimulating hormone. Anal. Chim. Acta 2012, 738, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ma, Z. Fabrication of an ultrasensitive electrochemical immunosensor for CEA based on conducting long-chain polythiols. Biosens. Bioelectron. 2013, 46, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pchelintsev, N.A.; Vakurov, A.; Millner, P.A. Simultaneous deposition of Prussian blue and creation of an electrostatic surface for rapid biosensor construction. Sens. Actuators B 2009, 138, 461–466. [Google Scholar] [CrossRef]
- Thipmanee, O.; Samanman, S.; Sankoh, S.; Numnuam, A.; Limbut, W.; Kanatharana, P.; Vilaivan, T.; Thavarungkul, P. Label-free capacitive DNA sensor using immobilized pyrrolidinyl PNA probe: Effect of the length and terminating head group of the blocking thiols. Biosens. Bioelectron. 2012, 38, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, T.; Banu, T.; Price, E.; Tharkur, J. Non-cytotoxic quantum dot–chitosan nanogel biosensing probe for potential cancer targeting agent. Nanomaterials 2015, 5, 2359–2379. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, T.; Xiao, Y.; Yu, D.; Zhang, N. Hyaluronic acid-chitosan nanoparticles to deliver Gd-DTPA for MR cancer imaging. Nanomaterials 2015, 5, 1379–1396. [Google Scholar] [CrossRef]
- Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Wang, Z.J.; Li, M.Y.; Zhang, Y.J.; Yuan, J.H.; Shen, Y.F.; Niu, L.; Ivaska, A. Thionine-interlinked multi-walled carbon nanotube/gold nanoparticle composites. Carbon 2007, 45, 2111–2115. [Google Scholar] [CrossRef]
- Chen, S.H.; Yuan, R.; Chai, Y.Q.; Xu, Y.; Min, L.G.; Li, N. A new antibody immobilization technique based on organic polymers protected Prussian blue nanoparticles and gold colloidal nanoparticles for amperometric immunosensors. Sens. Actuators B 2008, 135, 236–244. [Google Scholar] [CrossRef]
- Jia, X.; Liu, Z.; Liu, N.; Ma, Z. A label-free immunosensor based on graphene nanocomposites for simultaneous multiplexed electrochemical determination of tumor markers. Biosens. Bioelectron. 2014, 53, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Ma, J.; Ma, Z. One-step synthesis of grapheme oxide–thionine–Au nanocomposites and its application for electrochemical immunosensing. Biosens. Bioelectron. 2013, 47, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Zhao, Y.-X.; Xiao, B.-L.; Moosavi-Movahedi, A.A.; Ghourchian, H.; Sheibani, N. Direct electrochemistry of hemoglobin immobilized on a functionalized multi-walled carbon nanotubes and gold nanoparticles nanocomplex-modified glassy carbon electrode. Sensors 2013, 13, 8595–8611. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Gao, Y.; Gong, Z.; Wang, X.; Zhang, Y.; Gao, J. An amperometric immunosensor based on multi-walled carbon nanotubes-thionine-chitosan nanocomposite film for chlorpyrifos detection. Sensors 2012, 12, 17247–17261. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, R.; Tokura, N.; Tamura, H. Sulfated chitin and chitosan as novel biomaterials. Int. J. Biol. Macromol. 2007, 40, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Rinaudo, M. Main properties and current applications of some polysaccharides as biomaterials. Polym. Int. 2008, 57, 397–430. [Google Scholar] [CrossRef]
- Mourya, V.K.; Inamdar, N.N. Chitosan-modifications and applications: opportunities galore. React. Funct. Polym. 2008, 68, 1013–1051. [Google Scholar] [CrossRef]
- Wei, W.; Song, Y.; Shi, W.; Lin, N.; Jiang, T.; Cai, X. A high sensitivity MEA probe for measuring real time rat brain glucose flux. Biosens. Bioelectron. 2014, 5, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wang, L.; Luo, J.; Song, Y.; Liu, J.; Zhang, S.; Cai, X. Selective recognition of 5-hydroxytryptamine and dopamine on a multi-walled carbon nanotube-chitosan hybrid film-modified microelectrode array. Sensors 2015, 15, 1008–1021. [Google Scholar] [CrossRef] [PubMed]
- Rech, I.; Restelli, A.; Cova, S.; Ghioni, M.; Chiari, M.; Cretich, M. Microelectronic photosensors for genetic diagnostic Microsystems. Sens. Actuators B 2004, 100, 158–162. [Google Scholar] [CrossRef]
- Bai, H.; Campo, J.; Tsai, Y. Sensitive electrochemical thrombin aptasensor based on gold disk microelectrode arrays. Biosens. Bioelectron. 2013, 42, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Song, Y.; Wang, M.; Zhang, Z.; Fan, X.; Song, X.; Zhuang, P.; Yue, F.; Chan, P.; Cai, X. A silicon based implantable microelectrode array for electrophysiological and dopamine recording from cortex to striatum in the non-human primate brain. Biosens. Bioelectron. 2016, 85, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xu, H.; Song, Y.; Luo, J.; Wei, W.; Xu, S.; Cai, X. Highly sensitive detection of quantal dopamine secretion from pheochromocytoma cells using neural microelectrode array electrodeposited with polypyrrole graphene. ACS Appl. Mater. Interface 2015, 7, 7619–7626. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Song, Y.; Wang, L.; Zhang, S.; Luo, J.; Xu, S.; Cai, X. An implantable microelectrode array for simultaneous l-glutamate and electrophysiological recordings. Microsyst. Nanoeng. 2015, 1. [Google Scholar] [CrossRef]
Samples | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Initial (ng∙mL−1) a | 0.39 | 0.75 | 0.82 | 0.45 | 0.25 | 0.53 |
Added (ng∙mL−1) | 0.50 | 0.50 | 1.00 | 1.00 | 2.00 | 2.00 |
Found (ng∙mL−1) b | 0.86 | 1.32 | 1.81 | 1.48 | 2.26 | 2.51 |
Relative deviation (%) | 7.0 | 7.8 | 6.6 | 7.6 | 5.1 | 5.6 |
Recovery (%) | 92.3 | 109.3 | 98.7 | 106.7 | 104 | 96.2 |
Serum Samples | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
ELISA (g/mL) a | 0.78 | 3.26 | 1.50 | 8.17 | 23.2 |
Immune MEAs (ng/mL) a | 0.81 | 3.18 | 1.58 | 8.43 | 21.4 |
Relative deviation (%) | 3.85 | −2.45 | 5.33 | 3.18 | −7.76 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Wang, Y.; Wang, L.; Song, Y.; Luo, J.; Cai, X. A Label-Free Microelectrode Array Based on One-Step Synthesis of Chitosan–Multi-Walled Carbon Nanotube–Thionine for Ultrasensitive Detection of Carcinoembryonic Antigen. Nanomaterials 2016, 6, 132. https://doi.org/10.3390/nano6070132
Xu H, Wang Y, Wang L, Song Y, Luo J, Cai X. A Label-Free Microelectrode Array Based on One-Step Synthesis of Chitosan–Multi-Walled Carbon Nanotube–Thionine for Ultrasensitive Detection of Carcinoembryonic Antigen. Nanomaterials. 2016; 6(7):132. https://doi.org/10.3390/nano6070132
Chicago/Turabian StyleXu, Huiren, Yang Wang, Li Wang, Yilin Song, Jinping Luo, and Xinxia Cai. 2016. "A Label-Free Microelectrode Array Based on One-Step Synthesis of Chitosan–Multi-Walled Carbon Nanotube–Thionine for Ultrasensitive Detection of Carcinoembryonic Antigen" Nanomaterials 6, no. 7: 132. https://doi.org/10.3390/nano6070132
APA StyleXu, H., Wang, Y., Wang, L., Song, Y., Luo, J., & Cai, X. (2016). A Label-Free Microelectrode Array Based on One-Step Synthesis of Chitosan–Multi-Walled Carbon Nanotube–Thionine for Ultrasensitive Detection of Carcinoembryonic Antigen. Nanomaterials, 6(7), 132. https://doi.org/10.3390/nano6070132