Improved In Vivo Efficacy of Anti-Hypertensive Biopeptides Encapsulated in Chitosan Nanoparticles Fabricated by Ionotropic Gelation on Spontaneously Hypertensive Rats
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Process Variables for the Preparation of Chit-AntBiop-NPs
2.2. Characterization of Chitosan-AntBiop-NPs
2.2.1. Transmission Electron Microscopy (TEM)
2.2.2. In Vitro Release Profiles of Chit-AntBiop-NPs
2.2.3. Differential Scanning Calorimetry (DSC)
2.2.4. In Vivo Antihypertensive Efficacy
3. Materials and Methods
3.1. Materials
3.2. Preparation of ACE-Inhibitory/Anti-Hypertensive Biopeptides (AntBiop) from Stone Fish Using Bromelain
3.3. Preparation of the Chitosan-Antihypertensive Biopeptides Nanoparticles (Chit-AntBiop-NPs)
3.4. Characterization of the Chit-AntBiop-NPs
3.4.1. Particle Size, Polydispersity Index (pdi) and Zeta Potential (ζ)
3.4.2. Entrapment Efficiency of the Nanocapsules
3.4.3. Morphology
3.4.4. Differential Scanning Calorimetry (DSC)
3.4.5. In Vitro Release
3.4.6. In Vivo Antihypertensive Effect
3.4.7. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- World Health Organization. World Health Day. A Global Brief on Hypertension: Silent Killer, Global Public Health Crisis. 2013. Available online: http://ish-world.com/downloads/pdf/global_brief_hypertension.pdf (accessed on 22 April 2013).
- Sun, H.; Liu, D.; Li, Y.; Tang, X.; Cong, Y. Preparation and in vitro/in vivo characterization of enteric-coated nanoparticles loaded with the antihypertensive peptide VLPVPR. Int. J. Nanomed. 2014, 9, 1709–1716. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Forouzanfar, M.H.; Moran, A.E.; Barber, R.; Nguyen, G.; Feigin, V.L.; Naghavi, M.; Mensah, G.A.; Murray, C.J.L. Demographic and Epidemiologic Drivers of Global Cardiovascular Mortality. New Engl. J. Med. 2015, 372, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Naghavi, M.; Wang, H.; Lozano, R.; Davis, A.; Liang, X.; Zhou, M.; Vollset, S.; Ozgoren, A.A.; Abdalla, S.; Abd-Allah, F. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 385, 117–171. [Google Scholar] [CrossRef]
- Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Borden, W.B.; Bravata, D.M.; Dai, S.; Ford, E.S.; Fox, C.S. Heart Disease and Stroke Statistics—2013 Update: A Report From the American Heart Association; Department of Health and Human Services: Washington, DC, USA, 2013; Volume 127.
- Kontis, V.; Mathers, C.D.; Rehm, J.; Stevens, G.A.; Shield, K.D.; Bonita, R.; Riley, L.M.; Poznyak, V.; Beaglehole, R.; Ezzati, M. Contribution of six risk factors to achieving the 25 × 25 non-communicable disease mortality reduction target: A modelling study. Lancet 2014, 384, 427–437. [Google Scholar] [CrossRef]
- Patel, S.A.; Winkel, M.; Ali, M.K.; Narayan, K.M.V.; Mehta, N.K. Cardiovascular mortality associated with 5 leading risk factors: National and state preventable fractions estimated from survey data. Ann. Intern. Med. 2015, 163, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Soltani, Z.; Washco, V.; Morse, S.; Reisin, E. The Impacts of Obesity on the Cardiovascular and Renal Systems: Cascade of Events and Therapeutic Approaches. Curr. Hypertens. Rep. 2015, 17. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Tian, G.; Zhang, W.; Zhao, Y.; Zhao, L.; Wang, H.; Ng, T.B. A Tricholoma matsutake Peptide with Angiotensin Converting Enzyme Inhibitory and Antioxidative Activities and Antihypertensive Effects in Spontaneously Hypertensive Rats. Sci. Rep. 2016, 6, 24130. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.; Gonzalez, M.; Miranda-Massari, J.; Duconge, J.; Rodriguez-Gomez, J.; Berdiel, M.; Cintron, K. An Integrative Approach to Hypertension—A Comprehensive Review of Antihypertensive Nutrients and Botanicals. J. Restor. Med. 2016, 5, 57–73. [Google Scholar] [CrossRef]
- Beltrán-Barrientos, L.M.; Hernández-Mendoza, A.; Torres-Llanez, M.J.; González-Córdova, A.F.; Vallejo-Córdoba, B. Fermented milk as antihypertensive functional food: Invited review. J. Dairy Sci. 2016, 99, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Norris, R.; Harnedy, P.A.; FitzGerald, R.J. Antihypertensive Peptides from Marine Sources. In Bioactive Compounds from Marine Foods: Plant and Animal Sources, 1st ed.; Hernández-Ledesma, B., Herrero, M., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 27–56. ISBN 978-1-118-41284-8. [Google Scholar]
- Sharma, S.; Singh, R.; Rana, S. Bioactive peptides: A review. Int. J. Bioautom. 2011, 15, 223–250. [Google Scholar]
- Banga, A.K. Therapeutic Peptides and Proteins: Formulation, Processing, and Delivery Systems, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 1–400. ISBN 9781466566064. [Google Scholar]
- Renukuntla, J.; Vadlapudi, A.D.; Patel, A.; Boddu, S.S.H.; Mitra, A.K. Approaches for Enhancing Oral Bioavailability of Peptides and Proteins. Int. J. Pharm. 2013, 447, 75–93. [Google Scholar] [CrossRef] [PubMed]
- Sajeesh, S.; Sharma, C.P. Polymeric Nano/Microparticles for Oral Delivery of Proteins and Peptides. In Handbook of Encapsulation and Controlled Release, 1st ed.; Mishra, M., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 1359–1375. ISBN 978-1-4822-3234-9. [Google Scholar]
- Niu, Z.; Conejos-Sánchez, I.; Griffin, B.T.; O’Driscoll, C.M.; Alonso, M.J. Lipid-based nanocarriers for oral peptide delivery. Adv. Drug Deliv. Rev. 2016, 106, 337–354. [Google Scholar] [CrossRef] [PubMed]
- Shegokar, R.; Müller, R.H. Nanocrystals: Industrially feasible multifunctional formulation technology for poorly soluble actives. Int. J. Pharm. 2010, 399, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Alam, T.; Khan, S.; Gaba, B.; Haider, M.F.; Baboota, S.; Ali, J. Nanocarriers as treatment modalities for hypertension. Drug Deliv. 2017, 24, 358–369. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Yahya, R.; Hassan, A.; Yar, M.; Azzahari, A.D.; Selvanathan, V.; Sonsudin, F.; Abouloula, C.N. pH sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications. Polymers 2017, 9, 137. [Google Scholar] [CrossRef]
- Ahmed, T.A.; Aljaeid, B.M. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des. Dev. Ther. 2016, 10, 483–507. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.Y.; Xiong, X.Y.; Tian, Y.; Li, Z.L.; Gong, Y.C.; Li, Y.P. A review of biodegradable polymeric systems for oral insulin delivery. Drug Deliv. 2016, 23, 1882–1891. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-L.; Chen, J.-P.; Wei, K.-C.; Chen, J.-Y.; Huang, C.-W.; Liao, Z.-X. Release of Doxorubicin by a Folate-Grafted, Chitosan-Coated Magnetic Nanoparticle. Nanomaterials 2017, 7, 85. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Yan, H.; Puligundla, P.; Gao, X.; Zhou, Y.; Wan, X. Applications of chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: A review. Food Hydrocoll. 2017, 69, 286–292. [Google Scholar] [CrossRef]
- Khdair, A.; Hamad, I.; Alkhatib, H.; Bustanji, Y.; Mohammad, M.; Tayem, R.; Aiedeh, K. Modified-chitosan nanoparticles: Novel drug delivery systems improve oral bioavailability of doxorubicin. Eur. J. Pharm. Sci. 2016, 93, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wu, F.; Li, Y.; Yang, X.; Huang, J.; Lv, T.; Zhang, Y.; Chen, J.; Chen, H.; Gao, Y.; et al. Chitosan-based nanoparticles for improved anticancer efficacy and bioavailability of mifepristone. Beilstein J. Nanotechnol. 2016, 7, 1861–1870. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.K.; Urimi, D.; Harde, H.; Kushwah, V.; Jain, S. Folate appended chitosan nanoparticles augment the stability, bioavailability and efficacy of insulin in diabetic rats following oral administration. RSC Adv. 2015, 5, 105179–105193. [Google Scholar] [CrossRef]
- Nallamuthu, I.; Devi, A.; Khanum, F. Chlorogenic acid loaded chitosan nanoparticles with sustained release property, retained antioxidant activity and enhanced bioavailability. Asian J. Pharm. Sci. 2015, 10, 203–211. [Google Scholar] [CrossRef]
- Jarudilokkul, S.; Tongthammachat, A.; Boonamnuayvittaya, V. Preparation of chitosan nanoparticles for encapsulation and release of protein. Korean J. Chem. Eng. 2011, 28, 1247–1251. [Google Scholar] [CrossRef]
- Sharma, N.; Madan, P.; Lin, S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian J. Pharm. Sci. 2016, 11, 404–416. [Google Scholar] [CrossRef]
- Rosales-Martínez, P.; García-Pinilla, S.; Arroyo-Maya, I.J.; Hernández-Sánchez, H.; Cornejo-Mazón, M. Optimization of the conditions for the elaboration of chitosan nanoparticles charged with alpha lipoic acid, ascorbic acid and alpha-tocopherol. Rev. Mex. Ing. Quim. 2017, 16, 319–335. [Google Scholar]
- Gupta, V.K.; Karar, P.K. Optimization of Process Variables for the Preparation of Chitosan—Alginate Nanoparticles. Int. J. Pharm. Pharm. Sci. 2011, 3, 78–80. [Google Scholar]
- Patel, B.K.; Parikh, R.H.; Aboti, P.S. Development of oral sustained release rifampicin loaded chitosan nanoparticles by design of experiment. J. Drug Deliv. 2013, 2013, 370938. [Google Scholar] [CrossRef] [PubMed]
- Shaji, J.; Shaikh, M. Formulation, Optimization, and Characterization of Biocompatible Inhalable d-Cycloserine-Loaded Alginate-Chitosan Nanoparticles for Pulmonary Drug Delivery. Asian J. Pharm. Clin. Res. 2016, 9, 82–95. [Google Scholar] [CrossRef]
- He, C.; Yin, L.; Tang, C.; Yin, C. Size-dependent absorption mechanism of polymeric nanoparticles for oral delivery of protein drugs. Biomaterials 2012, 33, 8569–8578. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Zhao, S.; Li, Z.; Wang, Y.; Xu, B.; Fang, D.; Wang, F.; Zhang, Z.; He, L.; Song, X.; et al. Enhanced and Extended Anti-Hypertensive Effect of VP5 Nanoparticles. Int. J. Mol. Sci. 2016, 17, 1977. [Google Scholar] [CrossRef] [PubMed]
- Auwal, S.M.; Zarei, M.; Abdul-Hamid, A.; Saari, N. Optimization of Bromelain-Aided Production of Angiotensin I-Converting Enzyme Inhibitory Hydrolysates from Stone Fish Using Response Surface Methodology. Mar. Drugs 2017, 15, 104. [Google Scholar] [CrossRef] [PubMed]
- Auwal, S.M.; Zarei, M.; Abdul-Hamid, A.; Saari, N. Response Surface Optimisation for the Production of Antioxidant Hydrolysates from Stone Fish Protein Using Bromelain. Evid.-Based Complement. Altern. Med. 2017, 2017, 4765463. [Google Scholar] [CrossRef]
S/N | Formulation | Peak Type | Temperature (°C) | Normalized ΔH (J/g) | Integral (mJ) | |||
---|---|---|---|---|---|---|---|---|
Onset (To) | Peak (Tp) | End Set (Tf) | ΔT (Tf − To) | |||||
1 | Blank chitosan nanocapsules | Exothermic | 126.84 | 137.59 | 152.10 | 25.26 | −166.78 | −1077.41 |
2 | Chit-AntBiop-nanocapsules | Exothermic | 123.55 | 146.78 | 171.03 | 47.48 | −148.00 | −937.33 |
Time (h) | Negative Control (Group I) n = 6 | 800 mg/kg AntBiop (Group II) n = 6 | 50 mg/kg Captopril (Group III) n = 6 | 200 mg/kg Chit-AntBiop-NPs (Group IV) n = 6 | 400 mg/kg Chit-AntBiop-NPs (Group V) n = 6 | 800 mg/kg Chit-AntBiop-NPs (Group VI) n = 6 |
---|---|---|---|---|---|---|
2 | 1.68 ± 4.168 | 19.78 ± 9.966 * | 21.92 ± 6.668 * | 8.44 ± 0.775 * | 10.22 ± 3.415 * | 19.39 ± 4.474 * |
4 | 1.25 ± 0.970 | 11.78 ± 8.483 * | 43.06 ± 8.642 * | 28.77 ± 4.377 * | 33.22 ± 3.102 * | 54.95 ± 7.703 * |
6 | 3.44 ± 0.515 | 5.01 ± 8.033 | 50.18 ± 8.901 * | 34.46 ± 4.618 * | 42.68 ± 2.931 * | 59.78 ± 7.682 * |
8 | 0.68 ± 1.322 | 3.95 ± 5.461 | 36.77 ± 5.708 * | 25.55 ± 1.627 * | 32.62 ± 2.468 * | 43.45 ± 5.956 * |
24 | 0.13 ± 0.104 | 2.12 ± 9.323 | 4.5 ± 1.721 * | 3.69 ± 2.383 * | 6.66 ± 6.116 * | 11.96 ± 4.349 * |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Auwal, S.M.; Zarei, M.; Tan, C.P.; Basri, M.; Saari, N. Improved In Vivo Efficacy of Anti-Hypertensive Biopeptides Encapsulated in Chitosan Nanoparticles Fabricated by Ionotropic Gelation on Spontaneously Hypertensive Rats. Nanomaterials 2017, 7, 421. https://doi.org/10.3390/nano7120421
Auwal SM, Zarei M, Tan CP, Basri M, Saari N. Improved In Vivo Efficacy of Anti-Hypertensive Biopeptides Encapsulated in Chitosan Nanoparticles Fabricated by Ionotropic Gelation on Spontaneously Hypertensive Rats. Nanomaterials. 2017; 7(12):421. https://doi.org/10.3390/nano7120421
Chicago/Turabian StyleAuwal, Shehu Muhammad, Mohammad Zarei, Chin Ping Tan, Mahiran Basri, and Nazamid Saari. 2017. "Improved In Vivo Efficacy of Anti-Hypertensive Biopeptides Encapsulated in Chitosan Nanoparticles Fabricated by Ionotropic Gelation on Spontaneously Hypertensive Rats" Nanomaterials 7, no. 12: 421. https://doi.org/10.3390/nano7120421
APA StyleAuwal, S. M., Zarei, M., Tan, C. P., Basri, M., & Saari, N. (2017). Improved In Vivo Efficacy of Anti-Hypertensive Biopeptides Encapsulated in Chitosan Nanoparticles Fabricated by Ionotropic Gelation on Spontaneously Hypertensive Rats. Nanomaterials, 7(12), 421. https://doi.org/10.3390/nano7120421