Porous Carrageenan-Derived Carbons for Efficient Ciprofloxacin Removal from Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of the Activated Carbons
2.3. Adsorption Experiments
2.3.1. Effect of pH, Sorbent Dosage and Equilibrium Isotherms
2.3.2. Effect of Contact Time
2.4. Materials Characterization
3. Results and Discussion
3.1. Characterization of the Carbon Materials
3.2. Uptake of Ciprofloxacin From Water
3.2.1. Effect of pH on Adsorption in Aqueous Medium
3.2.2. Effect of Adsorbent Dosage
3.2.3. Isotherm Studies
3.2.4. Effect of Contact Time and Kinetic Studies
3.3. Comparison with Other Sorbents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sousa, J.C.G.; Ribeiro, A.R.; Barbosa, M.O.; Pereira, M.F.R.; Silva, A.M.T. A review on environmental monitoring of water organic pollutants identified by EU guidelines. J. Hazard. Mater. 2018, 344, 146–162. [Google Scholar] [CrossRef]
- Radović, T.; Grujić, S.; Petković, A.; Dimkić, M.; Laušević, M. Determination of pharmaceuticals and pesticides in river sediments and corresponding surface and ground water in the Danube River and tributaries in Serbia. Environ. Monit. Assess. 2015, 187. [Google Scholar] [CrossRef] [PubMed]
- Gavrilescu, M.; Demnerová, K.; Aamand, J.; Agathos, S.; Fava, F. Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. N. Biotechnol. 2015, 32, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Windsor, F.M.; Ormerod, S.J.; Tyler, C.R. Endocrine disruption in aquatic systems: up-scaling research to address ecological consequences. Biol. Rev. 2018, 93, 626–641. [Google Scholar] [CrossRef]
- Deblonde, T.; Cossu-Leguille, C.; Hartemann, P. Emerging pollutants in wastewater: A review of the literature. Int. J. Hyg. Environ. Health 2011, 214, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Paíga, P.; Correia, M.; Fernandes, M.J.; Silva, A.; Carvalho, M.; Vieira, J.; Jorge, S.; Silva, J.G.; Freire, C.; Delerue-Matos, C. Assessment of 83 pharmaceuticals in WWTP influent and effluent samples by UHPLC-MS/MS: Hourly variation. Sci. Total Environ. 2019, 648, 582–600. [Google Scholar] [CrossRef]
- Khattab, F.; Salem, H.; Riad, S.; Elbalkiny, H. Determination of fluoroquinolone antibiotics in industrial wastewater by high-pressure liquid chromatography and thin-layer chromatography-densitometric methods. J. Planar Chromatogr. Mod. TLC 2014, 27, 287–293. [Google Scholar] [CrossRef]
- Pereira, A.M.P.T.; Silva, L.J.G.; Lino, C.M.; Meisel, L.M.; Pena, A. Assessing environmental risk of pharmaceuticals in Portugal: An approach for the selection of the Portuguese monitoring stations in line with Directive 2013/39/EU. Chemosphere 2016, 144, 2507–2515. [Google Scholar] [CrossRef]
- Ahmadzadeh, S.; Asadipour, A.; Pournamdari, M.; Behnam, B.; Reza Rahimi, H.; Dolatabadi, M. Removal of ciprofloxacin from hospital wastewater using electrocoagulation technique by aluminum electrode: Optimization and modelling through response surface methodology. Process Saf. Environ. Prot. 2017, 109. [Google Scholar] [CrossRef]
- Rehman, M.S.U.; Rashid, N.; Ashfaq, M.; Saif, A.; Ahmad, N.; Han, J.I. Global risk of pharmaceutical contamination from highly populated developing countries. Chemosphere 2015, 138, 1045–1055. [Google Scholar] [CrossRef]
- Riaz, L.; Mahmood, T.; Khalid, A.; Rashid, A.; Ahmed Siddique, M.B.; Kamal, A.; Coyne, M.S. Fluoroquinolones (FQs) in the environment: A review on their abundance, sorption and toxicity in soil. Chemosphere 2018, 191, 704–720. [Google Scholar] [CrossRef] [PubMed]
- Hernández, F.; Calısto-Ulloa, N.; Gómez-Fuentes, C.M.; Gómez, J.F.; González-Rocha, G.; Bello-Toledo, H.; Botero-Coy, A.M.; Boıx, C.; Ibáñez, M.; Montory, M. Occurrence of antibiotics and bacterial resistance in wastewater and sea water from the Antarctic. J. Hazard. Mater. 2018, 447–456, in press. [Google Scholar] [CrossRef]
- El-Shafey, E.S.I.; Al-Lawati, H.; Al-Sumri, A.S. Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets. J. Environ. Sci. 2012, 24, 1579–1586. [Google Scholar] [CrossRef]
- Krzeminski, P.; Tomei, M.C.; Karaolia, P.; Langenhoff, A.; Almeida, C.M.R.; Felis, E.; Gritten, F.; Andersen, H.R.; Fernandes, T.; Manaia, C.M.; et al. Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Sci. Total Environ. 2019, 648, 1052–1081. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.K.; Saha, A.K.; Sinha, A. Removal of ciprofloxacin using modified advanced oxidation processes: Kinetics, pathways and process optimization. J. Clean. Prod. 2018, 171, 1203–1214. [Google Scholar] [CrossRef]
- Li, W.; Guo, C.; Su, B.; Xu, J. Photodegradation of four fluoroquinolone compounds by titanium dioxide under simulated solar light irradiation. J. Chem. Technol. Biotechnol. 2012, 87, 643–650. [Google Scholar] [CrossRef]
- Stadlmair, L.F.; Letzel, T.; Drewes, J.E.; Grassmann, J. Enzymes in removal of pharmaceuticals from wastewater: A critical review of challenges, applications and screening methods for their selection. Chemosphere 2018, 205, 649–661. [Google Scholar] [CrossRef]
- Yu, F.; Li, Y.; Han, S.; Ma, J. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere 2016, 153, 365–385. [Google Scholar] [CrossRef]
- De Andrade, J.R.; Oliveira, M.F.; Da Silva, M.G.C.; Vieira, M.G.A. Adsorption of Pharmaceuticals from Water and Wastewater Using Nonconventional Low-Cost Materials: A Review. Ind. Eng. Chem. Res. 2018, 57, 3103–3127. [Google Scholar] [CrossRef]
- Carabineiro, S.A.C.; Thavorn-Amornsri, T.; Pereira, M.F.R.; Serp, P.; Figueiredo, J.L. Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catal. Today 2012, 186, 29–34. [Google Scholar] [CrossRef]
- Yu, F.; Sun, S.; Han, S.; Zheng, J.; Ma, J. Adsorption removal of ciprofloxacin by multi-walled carbon nanotubes with different oxygen contents from aqueous solutions. Chem. Eng. J. 2016, 285, 588–595. [Google Scholar] [CrossRef]
- Álvarez-Torrellas, S.; Peres, J.A.; Gil-Álvarez, V.; Ovejero, G.; García, J. Effective adsorption of non-biodegradable pharmaceuticals from hospital wastewater with different carbon materials. Chem. Eng. J. 2017, 320, 319–329. [Google Scholar] [CrossRef]
- Shi, S.; Fan, Y.; Huang, Y. Facile low temperature hydrothermal synthesis of magnetic mesoporous carbon nanocomposite for adsorption removal of ciprofloxacin antibiotics. Ind. Eng. Chem. Res. 2013, 52, 2604–2612. [Google Scholar] [CrossRef]
- Wang, Y.X.; Ngo, H.H.; Guo, W.S. Preparation of a specific bamboo based activated carbon and its application for ciprofloxacin removal. Sci. Total Environ. 2015, 533, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Han, X.; Gu, P.; Fang, S.; Bai, J. Response surface methodology approach for optimization of ciprofloxacin adsorption using activated carbon derived from the residue of desilicated rice husk. J. Mol. Liq. 2017, 238, 316–325. [Google Scholar] [CrossRef]
- Mansour, F.; Al-Hindi, M.; Yahfoufi, R.; Ayoub, G.M.; Ahmad, M.N. The use of activated carbon for the removal of pharmaceuticals from aqueous solutions: a review. Rev. Environ. Sci. Biotechnol. 2017, 17, 1–37. [Google Scholar] [CrossRef]
- Correa, C.R.; Kruse, A. Biobased functional carbon materials: Production, characterization, and applications-A review. Materials 2018, 11. [Google Scholar] [CrossRef]
- Yang, Y.; Cui, J.; Zheng, M.; Hu, C.; Tan, S.; Xiao, Y.; Yang, Q.; Liu, Y. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem. Commun. 2012, 48, 380–382. [Google Scholar] [CrossRef]
- Marrakchi, F.; Ahmed, M.J.; Khanday, W.A.; Asif, M.; Hameed, B.H. Mesoporous-activated carbon prepared from chitosan flakes via single-step sodium hydroxide activation for the adsorption of methylene blue. Int. J. Biol. Macromol. 2017, 98, 233–239. [Google Scholar] [CrossRef]
- Guan, J.; Li, L.; Mao, S. Chapter 15—Applications of Carrageenan in Advanced Drug Delivery; Venkatesan, J., Anil, S., Kim, S.-K.B.T.-S.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 283–303. ISBN 978-0-12-809816-5. [Google Scholar]
- Stephen, A.M.; Phillips, G.O.; Williams, P.A. Food Polysaccharides and Their Applications, 2nd ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2006; ISBN 9780824759223. [Google Scholar]
- Nanaki, S.G.; Kyzas, G.Z.; Tzereme, A.; Papageorgiou, M.; Kostoglou, M.; Bikiaris, D.N.; Lambropoulou, D.A. Synthesis and characterization of modified carrageenan microparticles for the removal of pharmaceuticals from aqueous solutions. Colloids Surf. B Biointerfaces 2015, 127, 256–265. [Google Scholar] [CrossRef]
- Soares, S.F.; Simões, T.R.; António, M.; Trindade, T.; Daniel-da-Silva, A.L. Hybrid nanoadsorbents for the magnetically assisted removal of metoprolol from water. Chem. Eng. J. 2016, 302, 560–569. [Google Scholar] [CrossRef]
- Fernandes, T.; Soares, S.; Trindade, T.; Daniel-da-Silva, A. Magnetic Hybrid Nanosorbents for the Uptake of Paraquat from Water. Nanomaterials 2017, 7, 68. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, M.; Nanaki, S.G.; Kyzas, G.Z.; Koulouktsi, C.; Bikiaris, D.N.; Lambropoulou, D.A. Novel isocyanate-modified carrageenan polymer materials: Preparation, characterization and application adsorbent materials of pharmaceuticals. Polymers 2017, 9. [Google Scholar] [CrossRef]
- Raymundo-Piñero, E.; Cadek, M.; Béguin, F. Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv. Funct. Mater. 2009, 19, 1032–1039. [Google Scholar] [CrossRef]
- Fan, Y.; Yang, X.; Zhu, B.; Liu, P.F.; Lu, H.T. Micro-mesoporous carbon spheres derived from carrageenan as electrode material for supercapacitors. J. Power Sources 2014, 268, 584–590. [Google Scholar] [CrossRef]
- ISO (International Organisation for Standardisation). Determination of the Specific Surface Area of Solids by Gas Adsorption—BET Method (ISO 9277); ISO: Geneva, Switzerland, 2010. [Google Scholar]
- Gregg, S.J.; Sing, K.S.W. Adsorption, Surface Area and Porosity, 2nd ed.; Academic Press: London, UK, 1982. [Google Scholar]
- Dubinin, M.M. Fundamentals of the theory of adsorption in micropores of carbon adsorbents: Characteristics of their adsorption properties and microporous structures. Carbon N. Y. 1989, 27, 457–467. [Google Scholar] [CrossRef]
- Romanos, J.; Beckner, M.; Rash, T.; Firlej, L.; Kuchta, B.; Yu, P.; Suppes, G.; Wexler, C.; Pfeifer, P. Nanospace engineering of KOH activated carbon. Nanotechnology 2012, 23. [Google Scholar] [CrossRef]
- Chen, W.; Rakhi, R.B.; Hedhili, M.N.; Alshareef, H.N. Shape-controlled porous nanocarbons for high performance supercapacitors. J. Mater. Chem. A 2014, 2, 5236–5243. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Stoller, M.D.; Ganesh, K.J.; Cai, W.; Ferreira, P.J.; Pirkle, A.; Wallace, R.M.; Cychosz, K.A.; Thommes, M.; et al. Carbon-Based Supercapacitors Produced by Activation of Graphene. Science 2011, 332, 1537–1541. [Google Scholar] [CrossRef]
- Rivera-Utrilla, J.; Sánchez-Polo, M.; Gómez-Serrano, V.; Álvarez, P.M.; Alvim-Ferraz, M.C.M.; Dias, J.M. Activated carbon modifications to enhance its water treatment applications. An overview. J. Hazard. Mater. 2011, 187, 1–23. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Dresselhaus, M.S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy. Nano Lett. 2010, 10, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Castelló, D.; Lillo-Ródenas, M.A.; Cazorla-Amorós, D.; Linares-Solano, A. Preparation of activated carbons from Spanish anthracite - I. Activation by KOH. Carbon N. Y. 2001, 39, 741–749. [Google Scholar] [CrossRef]
- Biniak, S. The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 1997, 35, 1799–1810. [Google Scholar] [CrossRef]
- Tekin, K.; Karagöz, S.; Bektaş, S. A review of hydrothermal biomass processing. Renew. Sustain. Energy Rev. 2014, 40, 673–687. [Google Scholar] [CrossRef]
- Bedin, K.C.; Cazetta, A.L.; Souza, I.P.A.F.; Pezoti, O.; Souza, L.S.; Souza, P.S.C.; Yokoyama, J.T.C.; Almeida, V.C. Porosity enhancement of spherical activated carbon: Influence and optimization of hydrothermal synthesis conditions using response surface methodology. J. Environ. Chem. Eng. 2018, 6, 991–999. [Google Scholar] [CrossRef]
- Carmosini, N.; Lee, L.S. Chemosphere Ciprofloxacin sorption by dissolved organic carbon from reference and bio-waste materials. Chemosphere 2009, 77, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Drakopoulos, A.I.; Ioannou, P.C. Spectrofluorimetric study of the acid-base equilibria and complexation behavior of the fluoroquinolone antibiotics ofloxacin, norfloxacin, ciprofloxacin and pefloxacin in aqueous solution. Anal. Chim. Acta 1997, 354, 197–204. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, S.; Zhang, X.; Lei, L.; Ma, W.; Ma, C.; Song, L.; Chen, J.; Pan, B.; Xing, B. Cation-Pi Interaction: A Key Force for Sorption of Fluoroquinolone Antibiotics on Pyrogenic Carbonaceous Materials. Environ. Sci. Technol. 2017, 51, 13659–13667. [Google Scholar] [CrossRef]
- Ma, J.; Yang, M.; Yu, F.; Zheng, J. Water-enhanced Removal of Ciprofloxacin from Water by Porous Graphene Hydrogel. Sci. Rep. 2015, 5, 13578. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, I. The adsorption of gases on plance surfaces of glass, mica and platnium. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H. Concerning Adsorption in Solutions. Zeitschrift fur physikalische chemie-stochiometrie und verwandtschaftslehre. Phys. Chem. 1906, 57, 385–470. [Google Scholar]
- Sips, R. On the structure of a catalyst surface. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Umpleby, R.J.; Baxter, S.C.; Chen, Y.; Shah, R.N.; Shimizu, K.D. Characterization of Molecularly Imprinted Polymers with the Langmuir-Freundlich Isotherm. Anal. Chem. 2001, 73, 4584–4591. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.S.; Porter, J.F.; McKay, G. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems. Water. Air. Soil Pollut. 2002, 141, 1–33. [Google Scholar] [CrossRef]
- McKay, G.; Allen, S.J.; McConvey, I.F.; Walters, J.H.R. External mass transfer and homogeneous solid-phase diffusion effects during the adsorption of dyestuffs. Ind. Eng. Chem. Process Des. Dev. 1984, 23, 221–226. [Google Scholar] [CrossRef]
- Grégorio, C.; Lichtfouse, E.D.; Wilson, L.; Morin-Crini, N. Adsorption-Oriented Processes Using Conventional and Non-conventional Adsorbents for Wastewater Treatment. In Green Adsorbents for Pollutant Removal; Springer Nature: Basingstoke, UK, 2018; pp. 23–71. ISBN 978-3-319-92110-5. [Google Scholar]
- Lagergren, S. Zur Theorie der Sogenannten Adsorption Gelöster Stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar 1989, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Li, X.; Chen, S.; Fan, X.; Quan, X.; Tan, F.; Zhang, Y.; Gao, J. Adsorption of ciprofloxacin, bisphenol and 2-chlorophenol on electrospun carbon nanofibers: In comparison with powder activated carbon. J. Colloid Interface Sci. 2015, 447, 120–127. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Theydan, S.K. Fluoroquinolones antibiotics adsorption onto microporous activated carbon from lignocellulosic biomass by microwave pyrolysis. J. Taiwan Inst. Chem. Eng. 2014, 45, 219–226. [Google Scholar] [CrossRef]
- Mailler, R.; Gasperi, J.; Coquet, Y.; Deshayes, S.; Zedek, S. Study of a large scale powdered activated carbon pilot: Removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents. Water Res. 2015, 72, 315–330. [Google Scholar] [CrossRef]
- Snyder, S.A.; Adham, S.; Redding, A.M.; Cannon, F.S.; Decarolis, J.; Oppenheimer, J.; Wert, E.C.; Yoon, Y. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 2007, 202, 156–181. [Google Scholar] [CrossRef]
- Purkait, M.K.; Maiti, A.; DasGupta, S.; De, S. Removal of congo red using activated carbon and its regeneration. J. Hazard. Mater. 2007, 145, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Matatov-Meytal, Y.I.; Sheintuch, M. Abatement of Pollutants by Adsorption and Oxidative Catalytic Regeneration. Ind. Eng. Chem. Res. 1997, 36, 4374–4380. [Google Scholar] [CrossRef]
- Kim, J.H.; Ryu, Y.K.; Haam, S.; Lee, C.H.; Kim, W.S. Adsorption and steam regeneration of n-hexane, MEK, and toluene on activated carbon fiber. Sep. Sci. Technol. 2001, 36, 263–281. [Google Scholar] [CrossRef]
- Hassanzadeh, S.; Aminlashgari, N.; Hakkarainen, M. Microwave-assisted recycling of waste paper to green platform chemicals and carbon nanospheres. ACS Sustain. Chem. Eng. 2014, 3, 177–185. [Google Scholar] [CrossRef]
- Fang, C.S.; Lai, P.M.C. Microwave Regeneration of Spent Powder Activated Carbon. Chem. Eng. Commun. 1996, 147, 17–27. [Google Scholar] [CrossRef]
- Eddy, N.O.; Stoyanov, S.R.; Ebenso, E.E. Fluoroquinolones as corrosion inhibitors for mild steel in acidic medium; Experimental and theoretical studies. Int. J. Electrochem. Sci. 2010, 5, 1127–1150. [Google Scholar]
Sample | DSEM (µm/nm) a | C (wt%) b | H (wt%) b | S (wt%) b | O (wt%) b |
---|---|---|---|---|---|
HC-κ | 3.98 ± 1.63 µm | 70.734 | 4.453 | u.l.d. c | 24.813 |
HC-ι | 2.97 ± 1.18 µm | 71.214 | 4.479 | 0.356 | 23.951 |
HC-λ | 4.92 ± 0.48 µm | 67.141 | 4.112 | u.l.d c | 28.747 |
AC-κ | 45.9 ± 22.8 nm | 89.592 | 0.592 | u.l.d c | 9.816 |
AC-ι | 157.3 ± 51.5 nm | 73.315 | 3.266 | u.l.d c | 23.419 |
AC-λ | 54.1 ± 14.3 nm | 78.879 | 0.418 | u.l.d c | 20.703 |
Sample | SBET (m2/g) | VT (cm3/g) | Vmicro (cm3/g) | dP (nm) |
---|---|---|---|---|
HC-κ | 4.88 | 0.0070 | -- | 5.4 |
HC-ι | 30.44 | 0.0245 | -- | 3.8 |
HC-λ | 11.89 | 0.0107 | -- | 5.2 |
AC-κ | 2345.6 | 1.336 | 0.836 | 2.3 |
AC-ι | 2804.9 | 1.229 | 1.087 | 1.8 |
AC-λ | 2515.8 | 1.164 | 0.968 | 1.9 |
Isotherm | Sample | Model Parameters | Goodness of Fit | |||
---|---|---|---|---|---|---|
Langmuir | qL (mg·g−1) | KL (L·mg−1) | R2 | χ2 | ||
AC-κ | 410.1 | 3.616 | 0.9494 | 40.06 | ||
AC-ι | 327.5 | 3.907 | 0.9808 | 7.412 | ||
AC-λ | 435.6 | 2.941 | 0.8528 | 131.1 | ||
Freundlich | KF (mg(1−1/n)·L(1/n)·g−1) | n | R2 | χ2 | ||
AC-κ | 245.6 | 4.991 | 0.8943 | 66.59 | ||
AC-ι | 215.0 | 7.314 | 0.8431 | 79.09 | ||
AC-λ | 245.6 | 4.912 | 0.9315 | 45.27 | ||
Sips | NT(mg·g−1) | a (L·mg−1) | m | R2 | χ2 | |
AC-κ | 460.9 | 1.732 | 0.6913 | 0.9650 | 28.77 | |
AC-ι | 327.4 | 3.907 | 1.0 | 0.9808 | 7.412 | |
AC-λ | 1562.5 | 0.252 | 0.1909 | 0.9315 | 46.07 |
Sample | Pseudo 1st Order | Pseudo 2nd Order | ||||
---|---|---|---|---|---|---|
R2 (χ2) | k1 (min−1) | qe (mg·g−1) | R2 (χ2) | k2 (g·mg−1·min−1) | qe (mg·g−1) | |
AC-κ | 0.9999 (5.7 × 10−3) | 2.677 | 100.1 | 0.9999 (4.3 × 10−3) | 0.1309 | 100.5 |
AC-ι | 0.9999 (7.2 × 10−5) | 5.009 | 100.2 | 0.9999 (1.6 × 10−4) | 1.459 | 100.2 |
AC-λ | 0.9999 (8.6 × 10−4) | 3.424 | 100.1 | 0.9999 (2.6 × 10−3) | 0.2908 | 100.2 |
Adsorbent | qmax (mg/g) | SBET (m2/g) | te | pH | Reference |
---|---|---|---|---|---|
AC-κ | 422 | 2346 | 5 min | 6 | (this work) |
AC-ι | 330 | 2805 | 5 min | 6 | (this work) |
AC-λ | 459 | 2516 | 5 min | 6 | (this work) |
Powder activated carbon | 109 | 1075 | >2 h | 6.2 | [64] |
ACbamboo/H3PO4 | 613.0 | 2237 | >2 h | 6 | [24] |
ACpeach-stones/H3PO4 | 263.7 | 1521 | >4 h | 6.5 | [22] |
ACwood/H3PO4 | 231.0 | 1237 | 20 h | 5 | [20] |
ACalbizia-seed/Microwave | 131 | 1824 | >2 h | 9 | [65] |
Multiwalled Carbon Nanotubes | 206 | 382 | >1 h | 4 | [21] |
ACpalm leaflets | 116.3 | 24.4 | 48 h | 6 | [13] |
Magnetic Carbon Nanocomposite | 98.28 | 26.5 | 24 h | 7 | [23] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nogueira, J.; António, M.; Mikhalev, S.M.; Fateixa, S.; Trindade, T.; Daniel-da-Silva, A.L. Porous Carrageenan-Derived Carbons for Efficient Ciprofloxacin Removal from Water. Nanomaterials 2018, 8, 1004. https://doi.org/10.3390/nano8121004
Nogueira J, António M, Mikhalev SM, Fateixa S, Trindade T, Daniel-da-Silva AL. Porous Carrageenan-Derived Carbons for Efficient Ciprofloxacin Removal from Water. Nanomaterials. 2018; 8(12):1004. https://doi.org/10.3390/nano8121004
Chicago/Turabian StyleNogueira, João, Maria António, Sergey M. Mikhalev, Sara Fateixa, Tito Trindade, and Ana L. Daniel-da-Silva. 2018. "Porous Carrageenan-Derived Carbons for Efficient Ciprofloxacin Removal from Water" Nanomaterials 8, no. 12: 1004. https://doi.org/10.3390/nano8121004
APA StyleNogueira, J., António, M., Mikhalev, S. M., Fateixa, S., Trindade, T., & Daniel-da-Silva, A. L. (2018). Porous Carrageenan-Derived Carbons for Efficient Ciprofloxacin Removal from Water. Nanomaterials, 8(12), 1004. https://doi.org/10.3390/nano8121004