Enhancing Photovoltaic Performance of GaAs Single-Junction Solar Cells by Applying a Spectral Conversion Layer Containing Eu-Doped and Yb/Er-Doped Phosphors
Abstract
:1. Introduction
2. Experimental Details
2.1. Preparation and Characterization of Luminescent Downshifting Eu-Doped Phosphor Layer and Up-Conversion Yb/Er-Doped Phosphor Layer
2.2. Growth of Epitaxial Layer and Fabrication of GaAs Single-Junction Solar Cells
2.3. Fabrication and Characterization of GaAs Single-Junction Solar Cells Coated with SiO2 Layer Contained Eu-Doped Phosphors, Yb/Er-Doped Phosphors, and a Combination of Eu-Doped and Yb/Er-Doped Phosphors
3. Results and Discussion
3.1. Material Characteristics of Luminescent Downshifting Eu-Doped Phosphors and Up-Conversion Yb/Er-Doped Phosphors
3.2. Optical and Electrical Performance of GaAs Single-Junction Solar Cells Coated with an Antireflection Layer of ITO or ITO/SiO2
3.3. Optical and Electrical Performances of GaAs Single-Junction Solar Cells Coated with SiO2 Layer Containing Eu-Doped Phosphors, Yb/Er-Doped Phosphors, or A Combination of Eu-Doped and Yb/Er-Doped Phosphors
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shockley, W.; Queisser, H.J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Rühle, S. Tabulated values of the shockley–queisser limit for single junction solar cells. Sol. Energy 2016, 130, 139–147. [Google Scholar] [CrossRef]
- Queisser, H.J. Detailed balance limit for solar cell efficiency. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 2009, 159–160, 322–328. [Google Scholar] [CrossRef]
- Xu, Y.; Gong, T.; Munday, J.N. The generalized Shockley-Queisser limit for nanostructured solar cells. Sci. Rep. 2015, 13536. [Google Scholar] [CrossRef] [PubMed]
- Boriskina, S.V.; Chen, G. Exceeding the solar cell Shockley–Queisser limit via thermal up-conversion of low-energy photons. Opt. Commun. 2014, 314, 71–78. [Google Scholar] [CrossRef]
- Marti, A.; Balenzategui, J.L.; Reyna, R.F. Photon recycling and Shockley’s diode equation. J. Appl. Phys. 1997, 82, 4067–4075. [Google Scholar] [CrossRef]
- Hirst, L.C.; Ekins-Daukes, N.J. Fundamental losses in solar cells. Prog. Photovolt. Res. Appl. 2011, 19, 286–293. [Google Scholar] [CrossRef]
- Luque, A. Will we exceed 50% efficiency in photovoltaics. J. Appl. Phys. 2011, 110, 031301. [Google Scholar] [CrossRef]
- Dimroth, F.; Grave, M.; Beutel, P.; Fiedeler, U.; Karcher, C.; Tibbits, T.N.D.; Oliva, E.; Siefer, G.; Schachtner, M.; Wekkeli, A.; et al. Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Prog. Photovolt. Res. Appl. 2014, 22, 277–282. [Google Scholar] [CrossRef]
- Zeitouny, J.; Katz, E.A.; Dollet, A.; Vossier, A. Band gap engineering of multi-junction solar cells: Effects of series resistances and solar concentration. Sci. Rep. 2017, 7, 1766. [Google Scholar] [CrossRef]
- Braun, A.; Vossier, A.; Katz, E.A.; Ekins-Daukes, N.J.; Gordon, J.M. Multiple-bandgap vertical-junction architectures for ultra-efficient concentrator solar cells. Energy Environ. Sci. 2012, 5, 8523–8527. [Google Scholar] [CrossRef]
- Luque, A.; Martí, A.; Stanley, C. Understanding intermediate-band solar cells. Nat. Photonics 2012, 6, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Lan, H.; Zhang, Z.; Cui, P. Quantum efficiency of intermediate-band solar cells based on non-compensated n-p codoped TiO2. J. Chem. Phys. 2012, 137, 104702. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.-Y.; Xiong, W.; Rorison, J. Enhancing the efficiency of the intermediate band solar cells by introducing: Carrier losses, alloying and strain. IET Optoelectron. 2017, 11, 38–43. [Google Scholar] [CrossRef]
- Abrams, Z.R.; Niv, A.; Zhang, X. Solar energy enhancement using down-converting particles: A rigorous approach. J. Appl. Phys. 2011, 109, 114905. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Li, Z.; Cheng, R.; Luo, Q.; Luo, Y.; Chen, Y.; Chen, X.; Sun, Z.; Huang, S. Eu3+-doped NaGdF4 nanocrystal down-converting layer for efficient dye-sensitized solar cells. ACS Appl. Mater. Interfaces 2014, 6, 17454–17462. [Google Scholar] [CrossRef]
- Wu, X.; Meng, F.; Zhang, Z.; Yu, Y.; Liu, X.; Meng, J. Broadband down-conversion for silicon solar cell by ZnSe/phosphor heterostructure. Opt. Express 2014, 22, A735–A741. [Google Scholar] [CrossRef]
- De la Mora, M.B.; Amelines-Sarria, O.; Monroy, B.M.; Hernández-Pérez, C.D.; Lugo, J.E. Materials for downconversion in solar cells: Perspectives and challenges. Sol. Energy Mater. Sol. Cells 2017, 165, 59–71. [Google Scholar] [CrossRef]
- Boccolini, A.; Marques-Hueso, J.; Chen, D.; Wang, Y.; Richards, B.S. Physical performance limitations of luminescent down-conversion layers for photovoltaic applications. Sol. Energy Mater. Sol. Cells 2014, 122, 8–14. [Google Scholar] [CrossRef]
- Richards, B.S. Luminescent layers for enhanced silicon solar cell performance: Down-conversion. Sol. Energy Mater. Sol. Cells 2006, 90, 1189–1207. [Google Scholar] [CrossRef]
- Liu, M.; Lu, Y.; Xie, Z.B.; Chow, G.M. Enhancing near-infrared solar cell response using upconverting transparent ceramics. Sol. Energy Mater. Sol. Cells 2011, 95, 800–803. [Google Scholar] [CrossRef]
- Han, G.; Wang, M.; Li, D.; Bai, J.; Diao, G. Novel upconversion Er, Yb-CeO2 hollow spheres as scattering layer materials for efficient dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2017, 160, 54–59. [Google Scholar] [CrossRef]
- Sellers, D.G.; Zhang, J.; Chen, E.Y.; Zhong, Y.; Doty, M.F.; Zide, J.M.O. Novel nanostructures for efficient photon upconversion and high-efficiency photovoltaics. Sol. Energy Mater. Sol. Cells 2016, 155, 446–453. [Google Scholar] [CrossRef] [Green Version]
- Goldschmidt, J.C.; Fischer, S.; Löper, P.; Krämer, K.W.; Biner, D.; Hermle, M.; Glunz, S.W. Experimental analysis of upconversion with both coherent monochromatic irradiation and broad spectrum illumination. Sol. Energy Mater. Sol. Cells 2011, 95, 1960–1963. [Google Scholar] [CrossRef]
- MacDougall, S.K.W.; Ivaturi, A.; Marques-Hueso, J.; Krämer, K.W.; Richards, B.S. Broadband photoluminescent quantum yield optimisation of Er3+-doped β-NaYF4 for upconversion in silicon solar cells. Sol. Energy Mater. Sol. Cells 2014, 128, 18–26. [Google Scholar] [CrossRef]
- Shalav, A.; Richards, B.S.; Green, M.A. Luminescent layers for enhanced silicon solar cell performance: Up-conversion. Sol. Energy Mater. Sol. Cells 2007, 91, 829–842. [Google Scholar] [CrossRef]
- Lesyuk, R.; Marinov, V.; Hobbie, E.K.; Elbaradei, A.; Tarnavchyk, I.; Bobitski, Y. Toward cadmium-free spectral down-shifting converters for photovoltaic applications. Sol. Energy Mater. Sol. Cells 2016, 151, 52–59. [Google Scholar] [CrossRef]
- Hung, W.-B.; Chen, T.-M. Efficiency enhancement of silicon solar cells through a downshifting and antireflective oxysulfide phosphor layer. Sol. Energy Mater. Sol. Cells 2015, 133, 39–47. [Google Scholar] [CrossRef]
- Rothemund, R. Optical modelling of the external quantum efficiency of solar cells with luminescent down-shifting layers. Sol. Energy Mater. Sol. Cells 2014, 120, 616–621. [Google Scholar] [CrossRef]
- Ho, W.-J.; Shen, Y.-T.; Liu, J.-J.; You, B.-J.; Ho, C.-H. Enhancing photovoltaic performance using broadband luminescent down-shifting by combining multiple species of Eu-doped silicate phosphors. Nanomaterials 2017, 7, 340. [Google Scholar] [CrossRef]
- Liang, D.; Kang, Y.; Huo, Y.; Chen, Y.; Cui, Y.; Harris, J.S. High-efficiency nanostructured window GaAs solar cells. Nano Lett. 2013, 13, 4850–4856. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.-J.; Lin, J.-C.; Liu, J.-J.; Bai, W.-B.; Shiao, H.-P. Electrical and optical characterization of sputtered silicon dioxide, indium tin oxide, and silicon dioxide/indium tin oxide antireflection coating on single-junction GaAs solar cells. Materials 2017, 10, 700. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Nguyen, H.D.; Mho, S.; Lee, J. Enhanced efficiency of GaAs single-junction solar cells with inverted-cone-shaped nanoholes fabricated using anodic aluminum oxide masks. Int. J. Photoenergy 2013, 2013, 539765. [Google Scholar] [CrossRef]
- Han, H.-V.; Lin, C.-C.; Tsai, Y.-L.; Chen, H.-C.; Chen, K.-J.; Yeh, Y.-L.; Lin, W.-Y.; Kuo, H.-C.; Yu, P.A. highly efficient hybrid GaAs solar cell based on colloidal-quantum-dot-sensitization. Sci. Rep. 2014, 4, 5734. [Google Scholar] [CrossRef]
- Moon, S.; Kim, K.; Kim, Y.; Heo, J.; Lee, J. Highly efficient single-junction GaAs thin-film solar cell on flexible substrate. Sci. Rep. 2016, 6, 30107. [Google Scholar] [CrossRef]
- Ho, W.-J.; Bai, W.-B.; Liu, J.-J.; Shiao, H.-P. Efficiency enhancement of single-junction GaAs solar cells coated with europium-doped silicate-phosphor luminescent-down-shifting layer. Thin Solid Film. 2018, 660, 651–656. [Google Scholar] [CrossRef]
- Kayes, B.M.; Nie, H.; Twist, R.; Spruytte, S.G.; Reinhardt, F.; Kizilyalli, I.C.; Higashi, G.S. 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. In Proceedings of the 2011 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA, 19–24 June 2011; pp. 4–8. [Google Scholar] [CrossRef]
GaAs Solar Cell | Rw (%) (350–900 nm) | EQEw (%) (350–900 nm) |
---|---|---|
Bare cell (Cell) | 27.91 | 64.84 |
Cell with/ITO ARC | 15.04 | 76.64 |
Cell/DL-ARC (ITO/SiO2) | 16.21 | 77.15 |
Cell/DL-ARC + LDS | 12.65 | 79.61 |
Cell/DL-ARC + UC | 10.10 | 80.97 |
Cell/DL-ARC + (LDS + UC) | 9.75 | 81.49 |
Ideality Factor (n) | Saturation Current (J0) A/cm2 | |
---|---|---|
Bare cell (cell) | 2.12 | 5.04 × 10−11 |
Cell/ITO ARC | 1.84 | 2.20 × 10−12 |
Cell/DL-ARC (ITO/SiO2) | 1.77 | 1.15 × 10−12 |
Cell/DL-ARC + LDS | 1.77 | 1.15 × 10−12 |
Cell/DL-ARC + UC | 1.77 | 1.02 × 10−12 |
Cell/DL-ARC + (LDS + UC) | 1.79 | 1.40 × 10−12 |
GaAs Solar Cell | Voc (V) | Jsc (mA/cm2) | Jsc-EQE (mA/cm2) | F.F. (%) | η (%) | △Jsc (%) | △η (%) |
---|---|---|---|---|---|---|---|
Bare cell (cell) | 1.0468 | 22.19 | 21.92 | 83.21 | 19.33 | --- | --- |
Cell/SiO2 ARC | 1.0495 | 25.53 | 25.44 | 82.61 | 22.13 | 15.05 | 14.48 |
Cell with/ITO ARC | 1.0542 | 25.94 | 25.79 | 82.75 | 22.62 | 16.90 | 17.02 |
Cell with/DL-ARC (ITO/SiO2) | 1.0528 | 26.30 | 25.91 | 82.74 | 22.91 | 18.52 | 18.52 |
Cell with/DL-ARC + LDS | 1.0531 | 26.65 | 26.48 | 82.63 | 23.19 | 20.10 | 19.97 |
Cell with/DL-ARC + UC | 1.0537 | 27.19 | 27.12 | 82.79 | 23.72 | 22.53 | 22.71 |
Cell with/DL-ARC + (LDS + UC) | 1.0537 | 27.33 | 27.32 | 82.79 | 23.84 | 23.16 | 23.33 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, W.-J.; Liu, J.-J.; Lin, Z.-X.; Shiao, H.-P. Enhancing Photovoltaic Performance of GaAs Single-Junction Solar Cells by Applying a Spectral Conversion Layer Containing Eu-Doped and Yb/Er-Doped Phosphors. Nanomaterials 2019, 9, 1518. https://doi.org/10.3390/nano9111518
Ho W-J, Liu J-J, Lin Z-X, Shiao H-P. Enhancing Photovoltaic Performance of GaAs Single-Junction Solar Cells by Applying a Spectral Conversion Layer Containing Eu-Doped and Yb/Er-Doped Phosphors. Nanomaterials. 2019; 9(11):1518. https://doi.org/10.3390/nano9111518
Chicago/Turabian StyleHo, Wen-Jeng, Jheng-Jie Liu, Zong-Xian Lin, and Hung-Pin Shiao. 2019. "Enhancing Photovoltaic Performance of GaAs Single-Junction Solar Cells by Applying a Spectral Conversion Layer Containing Eu-Doped and Yb/Er-Doped Phosphors" Nanomaterials 9, no. 11: 1518. https://doi.org/10.3390/nano9111518
APA StyleHo, W. -J., Liu, J. -J., Lin, Z. -X., & Shiao, H. -P. (2019). Enhancing Photovoltaic Performance of GaAs Single-Junction Solar Cells by Applying a Spectral Conversion Layer Containing Eu-Doped and Yb/Er-Doped Phosphors. Nanomaterials, 9(11), 1518. https://doi.org/10.3390/nano9111518