NaYF4 Microstructure, beyond Their Well-Shaped Morphology
Abstract
:1. Introduction
2. Experimental Section
2.1. Typical Synthesis of the Er3+/Yb3+/Gd3+-NaYF4 Nanorods
2.2. Confocal Microscopy
2.3. TEM Observation
2.4. X-ray Diffraction: ESRF
3. Results and Discussion
3.1. Confocal Microscopy and Polarized Luminescence
3.2. TEM Observation and Doping Homogeneity
3.3. Phase Identification and Doping Dependence
3.4. Microstructural Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, C.; Quan, Z.; Yang, J.; Yang, P.; Lin, J. Highly Uniform and Monodisperse β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) Hexagonal Microprism Crystals Hydrothermal Synthesis and Luminescent Properties. Inorg. Chem. 2007, 46, 6329–6337. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Chen, G.; Zhu, Y.; Huo, L.; Mao, W.; Zou, D.; Sun, X.; Wu, E.; Zeng, H.; Zhang, J.; et al. Intense multiphoton upconversion of Yb3+–Tm3+ doped β-NaYF4 individual nanocrystals by saturation excitation. J. Mater. Chem. C 2014, 3, 364–369. [Google Scholar] [CrossRef]
- Liang, X.; Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. Synthesis of NaYF4 Nanocrystals with Predictable Phase and Shape. Adv. Funct. Mater. 2007, 17, 2757–2765. [Google Scholar] [CrossRef]
- Shi, F.; Zhao, Y. Sub-10 nm and monodisperse β-NaYF4:Yb,Tm,Gd nanocrystals with intense ultraviolet upconversion luminescence. J. Mater. Chem. C 2014, 2, 2198–2203. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, L.; Liu, X. Unraveling Epitaxial Habits in the NaLnF4 System for Color Multiplexing at the Single-Particle Level. Angew. Chem. Int. Ed. 2016, 55, 5718–5722. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Gu, Y.J.; Man, C.W.Y.; Cheng, J.; Xu, Z.; Zhang, Y.; Wang, H.; Lee, V.H.Y.; Cheng, S.H.; Wong, W.T. Polymer-Coated NaYF4:Yb3+, Er3+ Upconversion Nanoparticles for Charge-Dependent Cellular Imaging. ACS Nano 2011, 5, 7838–7847. [Google Scholar] [CrossRef]
- Vetrone, F.; Naccache, R.; Zamarrón, A.; Juarranz de la Fuente, A.; Sanz-Rodríguez, F.; Martinez Maestro, L.; Martín Rodriguez, E.; Jaque, D.; García Solé, J.; Capobianco, J.A. Temperature Sensing Using Fluorescent Nanothermometers. ACS Nano 2010, 4, 3254–3258. [Google Scholar] [CrossRef]
- Brites, C.D.S.; Lima, P.P.; Silva, N.J.O.; Millán, A.; Amaral, V.S.; Palacio, F.; Carlos, L.D. Lanthanide-based luminescent molecular thermometers. New J. Chem. 2011, 35, 1177–1183. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Sevilla, P.; Zhang, Y.; de Sousa, N.; Marqués, M.I.; Sanz-Rodríguez, F.; Jaque, D.; Liu, X.; Haro-González, P. Optical Torques on Upconverting Particles for Intracellular Microrheometry. Nano Lett. 2016. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.; Deng, R.; Tian, J.; Zong, Y.; Jin, D.; Liu, X. Multicolor Barcoding in a Single Upconversion Crystal. J. Am. Chem. Soc. 2014, 136, 4893–4896. [Google Scholar] [CrossRef]
- Binnemans, K. Interpretation of europium(III) spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Yi, G.; Chow, G. Synthesis of Hexagonal-Phase NaYF4:Yb,Er and NaYF4:Yb,Tm Nanocrystals with Efficient Up-Conversion Fluorescence. Adv. Funct. Mater. 2006, 16, 2324–2329. [Google Scholar] [CrossRef]
- Tu, D.; Liu, Y.; Zhu, H.; Li, R.; Liu, L.; Chen, X. Breakdown of Crystallographic Site Symmetry in Lanthanide-Doped NaYF4 Crystals. Angew. Chem. Int. Ed. 2013, 52, 1128–1133. [Google Scholar] [CrossRef] [PubMed]
- Karbowiak, M.; Cichos, J.; Rudowicz, C. Spectroscopic determination of site symmetry and space group in lanthanide-doped crystals: Resolving intricate symmetry aspects for β-NaLnF4. Polyhedron 2016, 105, 42–48. [Google Scholar] [CrossRef]
- Dinic, I.Z.; Mancic, L.T.; Rabanal, M.E.; Yamamoto, K.; Ohara, S.; Tamura, S.; Koji, T.; Costa, A.M.; Marinkovic, B.A.; Milosevic, O.B. Compositional and structural dependence of up-converting rare earth fluorides obtained through EDTA assisted hydro/solvothermal synthesis. Adv. Powder Technol. 2016. [Google Scholar] [CrossRef]
- Szefczyk, B.; Roszak, R.; Roszak, S. Structure of the hexagonal NaYF4 phase from first-principles molecular dynamics. RSC Adv. 2014, 4, 22526–22535. [Google Scholar] [CrossRef]
- Hudry, D.; Abeykoon, A.M.M.; Dooryhee, E.; Nykypanchuk, D.; Dickerson, J.H. Probing the Crystal Structure and Formation Mechanism of Lanthanide-Doped Upconverting Nanocrystals. Chem. Mater. 2016, 28, 8752–8763. [Google Scholar] [CrossRef]
- Chaudan, E.; Kim, J.; Tusseau-Nenez, S.; Goldner, P.; Malta, O.L.; Peretti, J.; Gacoin, T. Polarized Luminescence of Anisotropic LaPO4:Eu Nanocrystal Polymorphs. J. Am. Chem. Soc. 2018, 140, 9512–9517. [Google Scholar] [CrossRef]
- Shalav, A.; Richards, B.S.; Trupke, T.; Krämer, K.W.; Güdel, H.U. Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Appl. Phys. Lett. 2005, 86, 013505. [Google Scholar] [CrossRef]
- Wen, S.; Zhou, J.; Zheng, K.; Bednarkiewicz, A.; Liu, X.; Jin, D. Advances in highly doped upconversion nanoparticles. Nat. Commun. 2018, 9, 2415. [Google Scholar] [CrossRef]
- Balabhadra, S.; Debasu, M.L.; Brites, C.D.; Ferreira, R.A.; Carlos, L.D. Upconverting nanoparticles working as primary thermometers in different media. J. Phys. Chem. C 2017, 121, 13962–13968. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Upconversion luminescent materials: Advances and applications. Chem. Rev. 2014, 115, 395–465. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, Y. Na(Y1.5Na0.5) F6 single-crystal nanorods as multicolor luminescent materials. Nano Lett. 2006, 6, 1645–1649. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Han, Y.; Lim, C.S.; Lu, Y.; Wang, J.; Xu, J.; Chen, H.; Zhang, C.; Hong, M.; Liu, X. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061. [Google Scholar] [CrossRef]
- Gražulis, S.; Chateigner, D.; Downs, R.T.; Yokochi, A.F.T.; Quirós, M.; Lutterotti, L.; Manakova, E.; Butkus, J.; Moeck, P.; Le Bail, A. Crystallography Open Database—An open-access collection of crystal structures. J. Appl. Crystallogr. 2009, 42, 726–729. [Google Scholar] [CrossRef]
- Grzechnik, A.; Bouvier, P.; Mezouar, M.; Mathews, M.D.; Tyagi, A.K.; Köhler, J. Hexagonal Na1.5Y1.5F6 at High Pressures. J. Solid State Chem. 2002, 165, 159–164. [Google Scholar] [CrossRef]
- Roy, D.M.; Roy, R. Controlled Massively Defective Crystalline Solutions with the Fluorite Structure. J. Electrochem. Soc. 1964, 111, 421–429. [Google Scholar] [CrossRef]
- Górller-Walrand, C.; Binnemans, K. Chapter 155 Rationalization of crystal-field parametrization. In Handbook on the Physics and Chemistry of Rare Earths; Elsevier: Leiden, The Netherlands, 1996; Volume 23, pp. 121–283. [Google Scholar]
- Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent developments of the program FULLPROF. Comm. Powder Diffr. Newsl. 2001, 26, 12–19. [Google Scholar]
- Thompson, P.; Cox, D.E.; Hastings, J.B. Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J. Appl. Crystallogr. 1987, 20, 79–83. [Google Scholar] [CrossRef]
- Langford, J.I. A rapid method for analysing the breadths of diffraction and spectral lines using the Voigt function. J. Appl. Crystallogr. 1978, 11, 10–14. [Google Scholar] [CrossRef]
- Langford, J.I.; Wilson, A.J.C. Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 1978, 11, 102–113. [Google Scholar] [CrossRef]
- Guinier, A. X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies; Dover Publications: New York, NY, USA, 1994. [Google Scholar]
- De Keijser, T.H.; Langford, J.I.; Mittemeijer, E.J.; Vogels, A.B.P. Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening. J. Appl. Crystallogr. 1982, 15, 308–314. [Google Scholar] [CrossRef]
- Williamson, G.K.; Hall, W.H. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953, 1, 22–31. [Google Scholar] [CrossRef]
- Halder, N.C.; Wagner, C.N.J. Analysis of the Broadening of Powder Pattern Peaks Using Variance, Integral Breadth, and Fourier Coefficients of the Line Profile. In Advances in X-ray Analysis; Springer: Boston, MA, USA, 1966; pp. 91–102. [Google Scholar]
- Halder, N.C.; Wagner, C.N.J. Separation of particle size and lattice strain in integral breadth measurements. Acta Crystallogr. 1966, 20, 312–313. [Google Scholar] [CrossRef]
Sample | Y + Ln Amount | Solvent Volume | Heating | Type | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Y | Er | Yb | Gd | H2O | EtOH | OA | of | ||||||
Name | (mole%) | (mL) | Time (h) | Temp (°C) | Container | ||||||||
NR00 | 50 | 2 | 18 | 30 | 17 | 20 | 20 | 2 | 200 | 75 mL Autoclave | |||
NR01 | 80 | 2 | 18 | 0 | 17 | 20 | 20 | 20 | 200 | 75 mL Autoclave | |||
NR02 | 80 | 2 | 18 | 0 | 17 | 20 | 20 | 2 | 200 | 75 mL Autoclave | |||
NR03 | 75 | 2 | 18 | 5 | 17 | 20 | 20 | 2 | 200 | 75 mL Autoclave | |||
NR04 | 75 | 2 | 18 | 5 | 17 | 20 | 20 | 20 | 200 | 75 mL Autoclave | |||
NR05 | 65 | 2 | 18 | 15 | 45 | 50 | 50 | 2 | 200 | 200 mL Glass tube | |||
NR06 | 65 | 2 | 18 | 15 | 45 | 50 | 50 | 2 | 200 | 200 mL Glass tube | |||
NR07 | 65 | 2 | 18 | 15 | 45 | 50 | 50 | 20 | 200 | 200 mL Glass tube | |||
NR08 | 50 | 2 | 18 | 30 | 45 | 50 | 50 | 2 | 200 | 200 mL Glass tube | |||
NR09 | 50 | 2 | 18 | 30 | 4.5 | 5 | 5 | 2.5 | 20 | 20 Ml Glass tube | |||
NR10 | 50 | 2 | 18 | 30 | 12 | 11 | 11 | 3 | 200 | 75 mL Autoclave | |||
NR11 | 50 | 2 | 18 | 30 | 17 | 20 | 20 | 2 | 200 | 75 mL Autoclave | |||
NR12 | 35 | 2 | 18 | 45 | 45 | 50 | 50 | 2 | 200 | 200 mL Glass tube | |||
NR13 | 20 | 2 | 18 | 60 | 45 | 50 | 50 | 2 | 200 | 200 mL Glass tube |
Phase | Space | Cell | Atomic | Occupancy | Re Site | COD | Ref. | |
---|---|---|---|---|---|---|---|---|
Group | Parameters (Å) | Positions | Symmetry | ID | ||||
Y | 2/3 1/3 1/4 | 0.75 | ||||||
Hexa- | P63/m | 5.99276 | Na | 2/3 1/3 1/4 | 0.25 | 1517675 | [26] | |
gonal | 176 | Na | 0 0 z | 0.25 | ||||
() | 3.52281 | F | x y 1/4 | 0.25 | ||||
Y | 2/3 1/3 1/2 | 0.5 | ||||||
5.99276 | Y | 0 0 0 | 0.75 | |||||
Hexa- | P | Na | 2/3 1/3 1/2 | 0.5 | 1517672 | [26] | ||
gonal | 174 | Na | 1/3 2/3 z | 0.5 | ||||
() | F | x y 1/2 | 1 | |||||
3.52281 | F | x y 0 | 1 | |||||
Y | 1/3 2/3 1/2 | 0.25 | ||||||
5.9148 | Y | 0 0 0 | 1 | 1517674 | [26] | |||
Hexa- | P2m | Na | 1/3 2/3 1/2 | 0.75 | ||||
gonal | 189 | F | x 0 0 | 1 | ||||
() | 3.52281 | F | 0 1/2 | 1 | ||||
Y | 0 0 0 | 0.5 | ||||||
cubic | Fmm | 5.47000 | Na | 0 0 0 | 0.5 | 1517676 | [27] | |
() | 225 | F | 1/4 1/4 1/4 | 1 |
Sample | TEM Size (nm) | Aspect | Expected Doping (mol%) | Measured Doping (mol%) | Area in | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | L | D | Ratio | Y | Er | Yb | Gd | Y | Er | Yb | Gd | Figure 3 |
NR00 | 300 | 50 | 6 | 50 | 2 | 18 | 30 | 40.2 | 9.4 | 18.2 | 32 | |
NR09 | 150 | 60 | 2.5 | 50 | 2 | 18 | 30 | 40.0 | 6.9 | 15.6 | 38.6 | |
NR11 | 200 | 30 | 6.6 | 50 | 2 | 18 | 30 | 41.5 | 8.4 | 17.5 | 32 | 1 |
640 | 100 | 6.4 | 56 | 6.7 | 13.4 | 18 | 2 | |||||
NR13 | 55 | 40 | 1.4 | 20 | 2 | 18 | 60 | 13.3 | 14.5 | 13.5 | 58 | 4 |
130 | 35 | 3.7 | 23.9 | 14.6 | 13.9 | 47.6 | 3 |
TEM Size (nm) | AR | Gd | Shape | Crystallite | Microstrain | ||||
---|---|---|---|---|---|---|---|---|---|
L | D | (mole %) | a | b | Factor | Size (nm) | |||
NR01 | 835 | 113 | 7.4 | 0 | 1.16 | 1.69 | 0.89 | 85 | 2.5 × 10−4 |
NR02 | 1390 | 234 | 5.9 | 0 | 0.92 | 0.42 | 0.82 | 108 | 1.3 × 10−4 |
NR03 | 718 | 108 | 6.6 | 5 | 1.35 | 0.29 | 0.77 | 74 | 1 × 10−4 |
NR04 | 935 | 160 | 5.8 | 5 | 0.98 | 0.46 | 0.83 | 102 | 1.35 × 10−4 |
NR05 | 375 | 70 | 5.4 | 15 | 1.69 | 0.79 | 0.81 | 59 | 1.7 × 10−4 |
NR06 | 465 | 70 | 6.6 | 15 | 1.44 | 2.9 | 0.76 | 69 | 3.4 × 10−4 |
NR07 | 640 | 100 | 6.4 | 15 | 1.3 | 0.8 | 0.81 | 77 | 1.8 × 10−4 |
NR08 | 400 | 55 | 7.2 | 30 | 2.01 | 0.36 | 0.8 | 50 | 1.2 × 10−4 |
NR09 | 156 | 62 | 2.5 | 30 | 2.01 | −0.21 | 0.73 | 50 | n.s. |
NR10 | 130 | 70 | 1.9 | 30 | 2.04 | 0.53 | 0.77 | 49 | 1.5 × 10−4 |
NR11 | 260 | 55 | 4.7 | 30 | 2.21 | 1.08 | 0.80 | 45 | 2 × 10−4 |
NR12 | 137 | 45 | 3 | 45 | 2.83 | 0.72 | 0.77 | 35 | 1.7 × 10−4 |
NR13 | 60 | 45 | 1.3 | 60 | 3.9 | −6 | 0.78 | 26 | n.s. |
TEM Size (nm) | AR | Gd | Crystallite Size (nm) | |||
---|---|---|---|---|---|---|
L | D | (mol%) | min | max | ||
NR01 | 835 | 113 | 7.4 | 0 | 77 | 100 |
NR02 | 1390 | 234 | 5.9 | 0 | 143 | 153 |
NR03 | 718 | 108 | 6.6 | 5 | 79 | 180 |
NR04 | 935 | 160 | 5.8 | 5 | 132 | 142 |
NR05 | 375 | 70 | 5.4 | 15 | 65 | 77 |
NR06 | 465 | 70 | 6.6 | 15 | 63 | 69 |
NR07 | 640 | 100 | 6.4 | 15 | 89 | 93 |
NR08 | 400 | 55 | 7.2 | 30 | 58 | 102 |
NR09 | 156 | 62 | 2.5 | 30 | 52 | 110 |
NR10 | 130 | 70 | 1.9 | 30 | 57 | 74 |
NR11 | 260 | 55 | 4.7 | 30 | 51 | 87 |
NR12 | 137 | 45 | 3 | 45 | 40 | 92 |
NR13 | 60 | 45 | 1.3 | 60 | 36 | 36 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leménager, G.; Tusseau-Nenez, S.; Thiriet, M.; Coulon, P.-E.; Lahlil, K.; Larquet, E.; Gacoin, T. NaYF4 Microstructure, beyond Their Well-Shaped Morphology. Nanomaterials 2019, 9, 1560. https://doi.org/10.3390/nano9111560
Leménager G, Tusseau-Nenez S, Thiriet M, Coulon P-E, Lahlil K, Larquet E, Gacoin T. NaYF4 Microstructure, beyond Their Well-Shaped Morphology. Nanomaterials. 2019; 9(11):1560. https://doi.org/10.3390/nano9111560
Chicago/Turabian StyleLeménager, Godefroy, Sandrine Tusseau-Nenez, Maud Thiriet, Pierre-Eugène Coulon, Khalid Lahlil, Eric Larquet, and Thierry Gacoin. 2019. "NaYF4 Microstructure, beyond Their Well-Shaped Morphology" Nanomaterials 9, no. 11: 1560. https://doi.org/10.3390/nano9111560
APA StyleLeménager, G., Tusseau-Nenez, S., Thiriet, M., Coulon, P. -E., Lahlil, K., Larquet, E., & Gacoin, T. (2019). NaYF4 Microstructure, beyond Their Well-Shaped Morphology. Nanomaterials, 9(11), 1560. https://doi.org/10.3390/nano9111560