Investigation of Pyrophosphates KYP2O7Co-Doped with Lanthanide Ions Useful for Theranostics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structural Analysis
3.2. Luminescence Properties
3.3. Metabolic Activity, Morphology and Apoptosis of MC3T3-E1 Osteoblasts and 4B12 Osteoclast Cultured onto KYP2O7:1 mol% Er3+, x mol% Yb3+
3.4. Expression of Osteogenic and Osteclastogenic Markers in MC3T3-E1 Osteoblasts and 4B12 Osteoclast Cultured onto KYP2O7: 1 mol% Er3+, 20 mol% Yb3+in Relation to mTOR and Pi3K Pathway
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Durif, A. Crystal Chemistry of Condensed Phosphates, 1st ed.; Springer Science + Business Media, LLC: New York, NY, USA, 1995. [Google Scholar]
- Majeed, S.; Bashir, M.; Shivashankar, S.A. Dispersible crystalline nanobundles of YPO4 and Ln (Eu, Tb)-doped YPO4: Rapid synthesis, optical properties and bio-probe applications. J. Nanopart. Res. 2015, 17, 1–15. [Google Scholar] [CrossRef]
- Mukhopadhyay, D.; Patra, C.R.; Bhattacharya, R.; Patra, S.; Basu, S.; Mukherjee, P. Lanthanide Phosphate Nanorods as Inorganic Fluorescent Labels in Cell Biology Research. Clin. Chem. 2007, 53, 2026–2029. [Google Scholar]
- Di, W.; Li, J.; Shirahata, N.; Sakka, Y.; Willinger, M.G.; Pinna, N. Photoluminescence, cytotoxicity and in vitro imaging of hexagonal terbium phosphate nanoparticles doped with europium. Nanoscale 2011, 3, 1263–1269. [Google Scholar] [CrossRef] [PubMed]
- Mathur, A.; Halappa, P.; Shivakumara, C. Synthesis and characterization of Sm3+ activated La1−xGdxPO4 phosphors for white LEDs applications. J. Mater. Sci. Mater. Electron. 2018, 29, 19951–19964. [Google Scholar] [CrossRef]
- Yahiaoui, Z.; Hassairi, M.A.; Dammak, M.; Cavalli, E.; Mezzadri, F. Tunable luminescence and energy transfer properties in YPO4:Tb3+,Eu3+/Tb3+ phosphors. J. Lumin. 2018, 194, 96–101. [Google Scholar] [CrossRef]
- Li, H.; Gong, X.; Chen, Y.; Huang, J.; Lin, Y.; Luo, Z.; Huang, Y. Luminescence properties of phosphate phosphors Ba3Gd1-x(PO4)3:xSm3+. J. Rare Earths 2018, 36, 456–460. [Google Scholar] [CrossRef]
- Mbarek, A. Synthesis, structural and optical properties of Eu3+-doped ALnP2O7 (A = Cs, Rb, Tl; Ln = Y, Lu, Tm) pyrophosphates phosphors for solid-state lighting. J. Mol. Struct. 2017, 1138, 149–154. [Google Scholar] [CrossRef]
- Ferhi, M.; Rahmani, S.; Akrout, A.; Horchani-Naifer, K.; Charnay, C.; Durand, J.O.; Ferid, M. Hydrothermal synthesis and luminescence properties of nanospherical SiO2@LaPO4:Eu3+ (5%) composite. J. Alloys Compd. 2018, 764, 794–801. [Google Scholar] [CrossRef]
- Pan, Y.; Li, L.; Chang, W.; Chen, W.; Li, C.; Chen, P.; Zeng, Z. Efficient near-infrared quantum cutting in Tb3+, Yb3+codoped LuPO4 phosphors. J. Rare Earths 2017, 35, 235–240. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Zhang, M.; Zeng, Q. Light conversion material: LiBaPO4:Eu2+,Pr3+, suitablefor solar cell. RSC Adv. 2017, 7, 21221–21225. [Google Scholar] [CrossRef]
- Yuan, J.L.; Zhang, H.; Chen, H.H.; Yang, X.X.; Zhao, J.T.; Gu, M. Synthesis, structure and X-ray excited luminescence of Ce3+-doped AREP2O7-type alkali rare earth diphosphates (A = Na, K, Rb, Cs; RE = Y, Lu). J. Solid State Chem. 2007, 180, 3381–3387. [Google Scholar] [CrossRef]
- Hamady, A.; Zid, M.F.; Jouini, T. Structure cristalline de KYP2O7. J. Solid State Chem. 1994, 113, 120–124. [Google Scholar] [CrossRef]
- Pązik, R.; Watras, A.; Macalik, L.; Dereń, P.J. One step urea assisted synthesis of polycrystalline Eu3+ doped KYP2O7–luminescence and emission thermal quenching properties. New J. Chem. 2014, 38, 1129–1137. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, W.; Cao, X.; Su, G.; Cao, L.; Gao, R. A new type of KYP2O7 synthesized by the boric acid flux method and its luminescence properties. J. Alloys Compd. 2016, 657, 697–702. [Google Scholar] [CrossRef]
- Zhang, L.; Webster, T.J. Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today 2009, 4, 66–80. [Google Scholar] [CrossRef]
- Furth, M.; Atala, A.; van Dyke, M. Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials 2007, 28, 5068–5073. [Google Scholar] [CrossRef] [PubMed]
- Szyszka, K.; Targonska, S.; Gazinska, M.; Szustakiewicz, K.; Wiglusz, R.J. The Comprehensive Approach to Preparation and Investigation of the Eu3+ Doped Hydroxyapatite/poly(L-lactide) Nanocomposites: Promising Materials for Theranostics Application. Nanomaterials 2019, 9, 1146. [Google Scholar] [CrossRef] [PubMed]
- Yadid, M.; Feiner, R.; Dvir, T. Gold Nanoparticle-Integrated Scaffolds for Tissue Engineering and Regenerative Medicine. Nano Lett. 2019, 19, 2198–2206. [Google Scholar] [CrossRef] [PubMed]
- Reid, I.R. Osteoporosis treatment: Focus on safety. Eur. J. Intern. Med. 2013, 24, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Lewiecki, E.M.; Watts, N.B. Assessing response to osteoporosis therapy. Osteoporos. Int. 2008, 19, 1363–1368. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, K.; Bollerslev, J.; Everts, V.; Karsdal, M.A. Osteoclast Activity and Subtypes as a Function of Physiology and Pathology—Implications for Future Treatments of Osteoporosis. Endocr. Rev. 2011, 32, 31–63. [Google Scholar] [CrossRef] [PubMed]
- Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Szczeszak, A.; Runowski, M.; Wiglusz, R.J.; Grzyb, T.; Lis, S. Up-conversion green emission of Yb3+/Er3+ ions doped YVO4 nanocrystals obtained via modified Pechini’s method. Opt. Mater. 2017, 74, 128–134. [Google Scholar] [CrossRef]
- Yi, G.S.; Chow, G.M. Synthesis of Hexagonal-Phase NaYF4:Yb,Er and NaYF4:Yb,Tm Nanocrystals with Efficient Up-Conversion Fluorescence. Adv. Funct. Mater. 2006, 16, 2324–2329. [Google Scholar] [CrossRef]
- Wiglusz, R.J.; Watras, A.; Malecka, M.; Deren, P.J.; Pazik, R. Structure Evolution and Up-Conversion Studies of ZnX2O4:Er3+/Yb3+ (X = Al3+, Ga3+, In3+) Nanoparticles. Eur. J. Inorg. Chem. 2014, 2014, 1090–1101. [Google Scholar] [CrossRef]
- Vetrone, F.; Boyer, J.; Capobianco, J.A.; Speghini, A.; Bettinelli, M. Concentration-Dependent Near-Infrared to Visible Upconversion in Nanocrystalline and Bulk Y2O3:Er3+. Chem. Mater. 2003, 15, 2737–2743. [Google Scholar] [CrossRef]
- Pollnau, M.; Gamelin, D.R.; Lüthi, S.R.; Güdel, H.U.; Hehlen, M.P. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 2000, 61, 3337–3346. [Google Scholar] [CrossRef]
- Auzel, F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem. Rev. 2004, 104, 139–173. [Google Scholar] [CrossRef] [PubMed]
- Marycz, K.; Sobierajska, P.; Smieszek, A.; Maredziak, M.; Wiglusz, K.; Wiglusz, R.J. Li+ activated nanohydroxyapatite doped with Eu3+ ions enhances proliferative activity and viability of human stem progenitor cells of adipose tissue and olfactory ensheathing cells. Further perspective of nHAP: Li+, Eu3+ application in theranostics. Mater. Sci. Eng. C 2017, 78, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, B.J.; Yan, R.Z.; Wang, C.; Luo, C.C.; Hu, M. Evaluation of biocompatibility of Ti-6Al-4V scaffolds fabricated by electron beam melting. Zhonghua Kou Qiang Yi XueZaZhi 2016, 51, 667–672. [Google Scholar]
- Schrepfer, E.; Scorrano, L. Mitofusins, from Mitochondria to Metabolism. Mol. Cell 2016, 61, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.Y.; Jiang, S.; Zheng, L.M.; Ojcius, D.M.; Young, J.D. Separate metabolic pathways leading to DNA fragmentation and apoptotic chromatin condensation. J. Exp. Med. 1994, 179, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.M.; Wu, L.G.; Cai, J.W.; Wu, L.T.; Liang, M. Dexamethasone suppresses osteogenesis of osteoblast via the PI3K/Akt signaling pathway in vitro and in vivo. J. Recept. Signal Transduct. Res. 2019, 39, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Karner, C.M.; Lee, S.-Y.; Long, F. Bmp Induces Osteoblast Differentiation through both Smad4 and mTORC1 Signaling. Mol. Cell. Biol. 2017, 37, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | Primers (5’→3’) | Length of Amplicon | Accession No. |
---|---|---|---|
p53 | F: AGTCACAGCACATGACGGAGG R: GGAGTCTTCCAGTGTGATGATGG | 287 | NM_001127233.1 |
BCL-2 | F: GGATCCAGGATAACGGAGGC R: ATGCACCCAGAGTGATGCAG | 141 | NM_009741.5 |
BAX | F: AGGACGCATCCACCAAGAAGC R: GGTTCTGATCAGCTCGGGCA | 251 | NM_007527.3 |
p21 | F: TGTTCCACACAGGAGCAAAG R: AACACGCTCCCAGACGTAGT | 175 | NM_001111099.2 |
Cas-9 | F: CCGGTGGACATTGGTTCTGG R: GCCATCTCCATCAAAGCCGT | 278 | NM_001355176.1 |
GAPDH | F: TGCACCACCAACTGCTTAG R: GGATGCAGGGATGATGTTC | 177 | NM_001289726.1 |
Dopants Concentration | Decay Times | ||
---|---|---|---|
Er3+ (mol%) | Yb3+ (mol%) | τ1 (µs) | τ2 (µs) |
1 | 5 | 1.13 | 8.59 |
10 | 5.14 | 17.56 | |
15 | 7.52 | 19.94 | |
20 | 6.96 | 18.85 | |
0.50 | 15 | 0.91 | 6.73 |
0.75 | 5.85 | 19.90 | |
1 | 7.52 | 19.94 | |
2 | 5.92 | 12.06 | |
5 | 3.26 | 6.25 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watras, A.; Wujczyk, M.; Roecken, M.; Kucharczyk, K.; Marycz, K.; Wiglusz, R.J. Investigation of Pyrophosphates KYP2O7Co-Doped with Lanthanide Ions Useful for Theranostics. Nanomaterials 2019, 9, 1597. https://doi.org/10.3390/nano9111597
Watras A, Wujczyk M, Roecken M, Kucharczyk K, Marycz K, Wiglusz RJ. Investigation of Pyrophosphates KYP2O7Co-Doped with Lanthanide Ions Useful for Theranostics. Nanomaterials. 2019; 9(11):1597. https://doi.org/10.3390/nano9111597
Chicago/Turabian StyleWatras, Adam, Marta Wujczyk, Michael Roecken, Katarzyna Kucharczyk, Krzysztof Marycz, and Rafal J. Wiglusz. 2019. "Investigation of Pyrophosphates KYP2O7Co-Doped with Lanthanide Ions Useful for Theranostics" Nanomaterials 9, no. 11: 1597. https://doi.org/10.3390/nano9111597
APA StyleWatras, A., Wujczyk, M., Roecken, M., Kucharczyk, K., Marycz, K., & Wiglusz, R. J. (2019). Investigation of Pyrophosphates KYP2O7Co-Doped with Lanthanide Ions Useful for Theranostics. Nanomaterials, 9(11), 1597. https://doi.org/10.3390/nano9111597