Diameter- and Length-controlled Synthesis of Ultrathin ZnS Nanowires and Their Size-Dependent UV Absorption Properties, Photocatalytical Activities and Band-Edge Energy Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Controlled Synthesis
2.3. Purification and Ligand Exchange
2.4. UV Filter Preparation and Photocatalytic Test
2.5. Characterizations
3. Results and Discussion
3.1. Controlled Synthesis of Ultrathin ZnS Nanowires
3.2. Unique Absorption Properties and Applications
3.3. Size-Dependent Surface Adsorption Properties and Photocatalytic Application
3.4. Size-Dependent Band-edge Energy Levels
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Cademartiri, L.; Ozin, G.A. Ultrathin Nanowires—A Materials Chemistry Perspective. Adv. Mater. 2009, 21, 1013–1020. [Google Scholar] [CrossRef]
- Deng, Z.T.; Yan, H.; Liu, Y. Controlled Colloidal Growth of Ultrathin Single—Crystal ZnS Nanowires with a Magic-Size Diameter. Angew. Chem. Int. Ed. 2010, 122, 8877–8880. [Google Scholar] [CrossRef]
- Zhu, G.X.; Zhang, S.G.; Xu, Z.; Ma, J.; Shen, X.P. Ultrathin ZnS Single Crystal Nanowires: Controlled Synthesis and Room—Temperature Ferromagnetism Properties. J. Am. Chem. Soc. 2011, 133, 15605–15612. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Ju, Y.R.; Niederberger, M. Large-Area Alignment of Tungsten Oxide Nanowires over Flat and Patterned Substrates for Room-Temperature Gas Sensing. Angew. Chem. Int. Ed. 2015, 54, 340–344. [Google Scholar] [CrossRef]
- Hu, S.; Liu, H.L.; Wang, P.P.; Wang, X. Inorganic Nanostructures with Sizes down to 1 nm: A Macromolecule Analogue. J. Am. Chem. Soc. 2013, 135, 11115–11124. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.W.; Liu, S.; Gong, J.Y.; Wang, S.B.; Wang, L.; Yu, S.H. Ultrathin Te Nanowires: An Excellent Platform for Controlled Synthesis of Ultrathin Platinum and Palladium Nanowires/Nanotubes with Very High Aspect Ratio. Adv. Mater. 2009, 21, 1850–1854. [Google Scholar] [CrossRef]
- Cademartiri, L.; Malakooti, R.; O’Brien, P.G.; Miglori, A.; Petrov, S.; Kherani, N.P.; Ozin, G.A. Large-Scale Synthesis of Ultrathin Bi2S3 Necklace Nanowires. Angew. Chem. Int. Ed. 2008, 47, 3814–3817. [Google Scholar] [CrossRef]
- Li, D.; Xing, G.J.; Tang, S.L.; Li, X.H.; Fan, L.Z.; Li, Y.C. Ultrathin ZnSe nanowires: one-pot synthesis via a heat-triggered precursor slow releasing route, controllable Mn doping and application in UV and near-visible light detection. Nanocale 2017, 9, 15044–15055. [Google Scholar]
- Chen, G.H.; Ho, S.J.; Chen, H.S. Cubic Zincblende ZnSe Nanowires with an Entangling Structure Grown via Oriented Attachment and Their Application in Organic-Inorganic Heterojunction Light-Emitting Diodes. J. Phys. Chem. C 2014, 118, 25816–25822. [Google Scholar] [CrossRef]
- Yu, X.F.; Liu, J.W.; Cong, H.P.; Xue, L.; Arshad, M.N.; Albar, H.A.; Sobahi, T.R.; Gao, Q.; Yu, S.H. Template- and surfactant-free synthesis of ultrathin CeO2 nanowires in a mixed solvent and their superior adsorption capability for water treatment. Chem. Sci. 2015, 6, 2511–2515. [Google Scholar] [CrossRef]
- Liu, J.W.; Zheng, J.; Wang, J.L.; Xu, J.; Li, H.H.; Yu, S.H. Ultrathin W18O49 Nanowire Assemblies for Electrochromic Devices. Nano Lett. 2013, 13, 3589–3593. [Google Scholar] [CrossRef]
- Lew, K.K.; Pan, L.; Dickey, E.C.; Redwing, J.M. Vapor-Liquid-Solid Growth of Silicon-Germanium Nanowires. Adv. Mater. 2003, 15, 2073–2076. [Google Scholar] [CrossRef]
- Lee, J.S.; Brittman, S.; Yu, D.; Park, H.K. Vapor–Liquid–Solid and Vapor-Solid Growth of Phase-Change Sb2Te3 Nanowires and Sb2Te3/GeTe Nanowire Heterostructures. J. Am. Chem. Soc. 2008, 130, 6252–6258. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.W.; Liu, S.; Yu, S.H. Controlled Synthesis of One-Dimensional Inorganic Nanostructures Using Pre-Existing One-Dimensional Nanostructures as Templates. Adv. Mater. 2010, 22, 3925–3937. [Google Scholar] [CrossRef] [PubMed]
- Borg, M.; Schmid, H.; Moselund, K.E.; Cutaia, D.; Riel, H. Mechanisms of template-assisted selective epitaxy of InAs nanowires on Si. J. Appl. Phys. 2015, 117, 144303. [Google Scholar] [CrossRef]
- Li, Z.; Kurtulus, Ö.; Fu, N.; Wang, Z.; Kornowski, A.; Pietsch, U.; Mews, A. Controlled Synthesis of CdSe Nanowires by Solution–Liquid–Solid Method. Adv. Funct. Mater. 2009, 19, 3650–3661. [Google Scholar] [CrossRef]
- Kuno, M.; Ahmad, O.; Protasenko, V.; Bacinello, D.; Kosel, T.H. Solution-Based Straight and Branched CdTe Nanowires. Chem. Mater. 2006, 18, 5722–5732. [Google Scholar] [CrossRef]
- Tang, Z.Y.; Kotov, N.A.; Giersig, M. Spontaneous Organization of Single CdTe Nanoparticles into Luminescent Nanowires. Science 2002, 297, 237–240. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Xu, H.R.; Wang, Q.B. Ultrathin single crystal ZnS nanowires. Chem. Commun. 2010, 46, 8941–8943. [Google Scholar] [CrossRef]
- Jin, X.P.; Kruszynska, M.; Parisi, J. Catalyst-Free Synthesis and Shape Control of CdTe Nanowires. Nano. Res. 2011, 4, 824–835. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, S.J.; Yu, S.H. Recent advances in oriented attachment growth and synthesis of functional materials: Concept, evidence, mechanism, and future. J. Mater. Chem. 2009, 19, 191–207. [Google Scholar] [CrossRef]
- Pradhan, N.; Xu, H.F.; Peng, X.G. Colloidal CdSe Quantum Wires by Oriented Attachment. Nano Lett. 2006, 6, 720–724. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.S.; Talapin, D.V.; Gaschler, W.; Gaschler, W.; Murray, B.C. Designing PbSe Nanowires and Nanorings through Oriented Attachment of Nanoparticles. J. Am. Chem. Soc. 2005, 127, 7140–7147. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Chen, M.; Shan, W.; Zhan, T.; Liao, M.; Fang, X.; Hu, X.; Wu, L. Stacking-Order-Dependent Optoelectronic Properties of Bilayer Nano Film Photodetectors Made From Hollow ZnS and ZnO Microspheres. Adv. Mater. 2012, 24, 5872–5877. [Google Scholar] [CrossRef]
- Fang, X.S.; Wu, L.M.; Hu, L.F. ZnS Nanostructure Arrays: A Developing Material Star. Adv. Mater. 2011, 23, 585–598. [Google Scholar] [CrossRef] [PubMed]
- Ubale, A.U.; Sangawar, V.S.; Kulkarni, D.K. Size dependent optical characteristics of chemically deposited nanostructured ZnS thin films. Bull. Mater. Sci. 2007, 30, 147–151. [Google Scholar] [CrossRef]
- Liu, J.; Chen, H.; Lin, Z.; Lin, J.M. Preparation of Surface Imprinting Polymer Capped Mn-Doped ZnS Quantum Dots and Their Application for Chemiluminescence Detection of 4-Nitrophenol in Tap Water. Anal. Chem. 2010, 82, 7380–7386. [Google Scholar] [CrossRef]
- Chu, X.Y.; Hong, X.; Zou, P.; Men, J.; Liu, Y.C. Ultrasensitive protein detection in terms of multiphonon resonance Raman scattering in ZnS nanocrystals. Appl. Phys. Lett. 2011, 98, 253703. [Google Scholar] [CrossRef]
- Diaz-Diestra, D.; Thapa, B.; Badillo-Diaz, D.; Beltran-Huarac, J.; Morell, G.; Weiner, B.R. Graphene Oxide /ZnS: Mn Nanocomposite Functionalized with Folic Acid as a Nontoxic and Effective Theranostic Platform for Breast Cancer Treatment. Nanomaterials 2018, 8, 484. [Google Scholar] [CrossRef]
- Nair, P.S.; Radhakrishnan, T.; Revaprasadu, N.; Kolawole, G.; Brien, P.O. Cadmium ethylxanthate: A novel single-source precursor for the preparation of CdS nanoparticles. J. Mater. Chem. 2002, 12, 2722–2725. [Google Scholar] [CrossRef]
- Haram, S.K.; Quinn, B.M.; Bard, A.J. Electrochemistry of CdS Nanoparticles: A Correlation between Optical and Electrochemical Band Gaps. J. Am. Chem. Soc. 2001, 123, 8860–8861. [Google Scholar] [CrossRef]
- Li, Y.C.; Zhong, H.Z.; Li, R.; Zhou, Y.; Yang, C.H.; Li, Y.F. High-Yield Fabrication and Electrochemical Characterization of Tetrapodal CdSe, CdTe, and CdSexTe1–x Nanocrystals. Adv. Funct. Mater. 2006, 16, 1705–1716. [Google Scholar] [CrossRef]
- Liu J., J.; Yang W., T.; Li, Y.C.; Fan, L.Z.; Li, Y.F. Electrochemical studies of the effects of the size, ligand and composition on the band structures of CdSe, CdTe and their alloy nanocrystals. Phys. Chem. Chem. Phys. 2014, 16, 4778–4788. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Liu, J.J.; Li, Y.C.; Fan, L.Z.; Ding, Y.Q.; Li, Y.F. Ultralong CdTe Nanowires: Catalyst-Free Synthesis and High-Yield Transformation into Core–Shell Heterostructures. Adv. Funct. Mater. 2012, 22, 2402–2411. [Google Scholar] [CrossRef]
- Li, Y.C.; Li, X.H.; Yang, C.H.; Li, Y.F. Ligand-Controlling Synthesis and Ordered Assembly of ZnS Nanorods and Nanodots. J. Phys. Chem. B 2004, 108, 16002–16011. [Google Scholar] [CrossRef]
- Jiang, F.; Li, Y.C.; Ye, M.F.; Fan, L.Z.; Ding, Y.Q.; Li, Y.F. Ligand-Tuned Shape Control, Oriented Assembly, and Electrochemical Characterization of Colloidal ZnTe Nanocrystals. Chem. Mater. 2010, 22, 4632–4641. [Google Scholar] [CrossRef]
- Yong, K.T.; Sahoo, Y.; Zeng, H.; Swihart, M.T.; Minter, J.R.; Prasad, P.N. Formation of ZnTe Nanowires by Oriented Attachment. Chem. Mater. 2007, 19, 4108–4110. [Google Scholar] [CrossRef]
- Ma, C.; Moore, D.; Li, J.; Wang, Z.L. Nanobelts, Nanocombs, and Nanowindmills of Wurtzites ZnS. Adv. Mater. 2003, 15, 228–231. [Google Scholar] [CrossRef]
- Moshofsky, B.; Mokari, T. Length and Diameter Contronl of Ultrathin Nanowires of Substoichiometric Tungsten Oxide with Insights into the Growth Mechanism. Chem. Mater. 2013, 25, 1384–1391. [Google Scholar] [CrossRef]
- Bergin, S.M.; Chen, Y.H.; Rathmell, A.R.; Charbonneau, P.; Lib, Z.Y.; Wiley, B.J. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 2012, 4, 1996–2004. [Google Scholar] [CrossRef]
- Zhuang, T.T.; Yu, P.; Fan, F.J.; Wu, L.; Liu, X.J.; Yu, S.H. Controlled Synthesis of Kinked Ultrathin ZnS Nanorods/Nanowires Triggered by Chloride Ions: A Case Study. Small 2014, 10, 1394–1402. [Google Scholar] [CrossRef]
- Peng, Z.A.; Peng, X.G. Mechanism of the Shape Evolution of CdSe Nanocrystals. J. Am. Chem. Soc. 2001, 123, 1389–1395. [Google Scholar] [CrossRef]
- Sengupta, S.; Sarma, D.D.; Acharya, S. Coalescence of magic sized CdSe into rods and wires and subsequent energy transfer. J. Mater. Chem. 2011, 21, 11585–11591. [Google Scholar] [CrossRef]
- Liu, X.F.; Wan, J.W.; Xiong, Y.S.; Liang, S.Y.; Gao, Y.; Tang, Z.Y. Synthesis of Uniform CdSe Quantum Wires via Oriented Attachment. J. Nanosci. Nanotechnol. 2015, 15, 5798–5806. [Google Scholar]
- Rossetti, R.; Ellison, J.; Gibson, J.; Brus, L. Size effects in the excited electronic states of small colloidal CdS crystallites. J. Chem. Phys. 1984, 80, 4464. [Google Scholar] [CrossRef]
- Zhang, L.J.; Shen, X.C.; Liang, H.; Yao, J.T. Multiple Families of Magic-Sized ZnSe Quantum Dots via Noninjection One-Pot and Hot-Injection Synthesis. J. Phys. Chem. C 2010, 114, 21921–21927. [Google Scholar] [CrossRef]
- Xiong, S.L.; Xi, B.; Wang, C.; Xu, D.; Feng, X.; Zhu, Z.; Qian, Y.T. Tunable Synthesis of Various Wurtzite ZnS Architectural Structures and Their Photocatalytic Properties. Adv. Funct. Mater. 2007, 17, 2728–2738. [Google Scholar] [CrossRef]
- Panda, A.B.; Glaspell, G.; El-Shall, M.S. Microwave Synthesis of Highly Aligned Ultra Narrow Semiconductor Rods and Wires. J. Am. Chem. Soc. 2006, 128, 2790–2791. [Google Scholar] [CrossRef] [PubMed]
- Marcus, D.A. High-Performance Optical Filters for Fluorescence Analysis. Cell Motil. Cytoskel. 1988, 10, 62–70. [Google Scholar] [CrossRef]
- Huang, Y.M.; Li, M.Y.; Yang, L.; Zhai, B.G. Eu2+ and Eu3+ Doubly Doped ZnWO4 Nanoplates with Superior Photocatalytic Performance for Dye Degradation. Nanomaterials 2018, 8, 765. [Google Scholar] [CrossRef]
- Liu, X.L.; Li, D.; Yang, W.T.; Tang, S.L.; Li, X.H.; Fan, L.Z.; Li, Y.C. Controlled calcination of ZnSe and ZnTe nanospheres to prepare visible-light catalysts with enhanced photostability and photoactivity. J Mater. Sci. 2016, 51, 11021–11037. [Google Scholar] [CrossRef]
- Yang, W.T.; Liu, X.L.; Li, D.; Fan, L.Z.; Li, Y.C. Aggregation-induced preparation of ultrastable zinc sulfide colloidal nanospheres and their photocatalytic degradation of multiple organic dyes. Phys. Chem. Chem. Phys. 2015, 17, 14532–14541. [Google Scholar] [CrossRef] [PubMed]
Samples | UPS | CV | Absorption | ||
---|---|---|---|---|---|
Evb/eV | Evb/eV (E′ox /V) | Ecb/eV (E′red/V) | Eg/eV | Eg/eV | |
D = 1.0 nm | −6.58 | −6.44 (1.73) | −2.51(−2.20) | 3.93 | 4.10 |
D = 1.5 nm | −6.52 | −6.41(1.70) | −2.50(−2.21) | 3.91 | 3.82 |
D = 2.4 nm | −6.50 | −6.34 (1.64) | −2.53 (−2.18) | 3.81 | 3.76 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, G.; Liu, X.; Hao, S.; Li, X.; Fan, L.; Li, Y. Diameter- and Length-controlled Synthesis of Ultrathin ZnS Nanowires and Their Size-Dependent UV Absorption Properties, Photocatalytical Activities and Band-Edge Energy Levels. Nanomaterials 2019, 9, 220. https://doi.org/10.3390/nano9020220
Xing G, Liu X, Hao S, Li X, Fan L, Li Y. Diameter- and Length-controlled Synthesis of Ultrathin ZnS Nanowires and Their Size-Dependent UV Absorption Properties, Photocatalytical Activities and Band-Edge Energy Levels. Nanomaterials. 2019; 9(2):220. https://doi.org/10.3390/nano9020220
Chicago/Turabian StyleXing, Guanjie, Xiaoli Liu, Simeng Hao, Xiaohong Li, Louzhen Fan, and Yunchao Li. 2019. "Diameter- and Length-controlled Synthesis of Ultrathin ZnS Nanowires and Their Size-Dependent UV Absorption Properties, Photocatalytical Activities and Band-Edge Energy Levels" Nanomaterials 9, no. 2: 220. https://doi.org/10.3390/nano9020220
APA StyleXing, G., Liu, X., Hao, S., Li, X., Fan, L., & Li, Y. (2019). Diameter- and Length-controlled Synthesis of Ultrathin ZnS Nanowires and Their Size-Dependent UV Absorption Properties, Photocatalytical Activities and Band-Edge Energy Levels. Nanomaterials, 9(2), 220. https://doi.org/10.3390/nano9020220