Selective Molecular Recognition of Low Density Lipoprotein Based on β-Cyclodextrin Coated Electrochemical Biosensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Apparatus
2.3. Fabrication of β-CD-Au Sensor for LDL Detection
2.3.1. Preparation of Au Modified Electrode
2.3.2. Preparation of β-CD Modified Au Electrode
2.3.3. Electrochemical Measurements of β-CD-Au Sensor
3. Results and Discussion
3.1. Synthesis and Characterization of β-CD-Au Modified Electrode
3.2. Kinetics of LDL Adsorption on the β-CD-Au Modified Electrode
3.3. LDL Adsorption on the β-CD-Au Modified Surface
3.4. Selectivity of the β-CD-Au Modified Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, J.; Cui, X.; Gong, Y.; Xu, X.; Gao, B.; Wen, T.; Lu, T.J.; Xu, F. Portable microfluidic and smartphone-based devices for monitoring of cardiovascular diseases at the point of care. Biotechnol. Adv. 2016, 34, 305–320. [Google Scholar] [CrossRef] [PubMed]
- Dam, V.; Dobson, A.J.; Onland-Moret, N.C.; van der Schouw, Y.T.; Mishra, G.D. Vasomotor menopausal symptoms and cardio-vascular disease risk in midlife: A longitudinal study. Maturitas 2020, 133, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.Y.; Yang, Y.; Kim, H.-S.; Cho, J.-H.; Yoon, K.-H.; Chung, W.S.; Lee, S.-H.; Chang, K. Effect of visit-to-visit LDL-, HDL-, and non-HDL-cholesterol variability on mortality and cardiovascular outcomes after percutaneous coronary intervention. Atherosclerosis 2018, 279, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, S.; Grebe, A.; Bakke, S.S.; Bode, N.; Halvorsen, B.; Ulas, T.; Skjelland, M.; De Nardo, D.; Labzin, L.; Kerksiek, A.; et al. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Sci. Transl. Med. 2016, 8, 333ra50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Han, M.; Wang, Y.; Liu, Q.; Zhao, W.; Su, B.; Zhao, C. A mussel-inspired approach towards heparin-immobilized cellulose gel beads for selective removal of low density lipoprotein from whole blood. Carbohydr. Polym. 2018, 202, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Li, Y.; Cai, H.; Xu, X.; Zhao, W.; Zhang, D.; Zhao, C.-S.; Li, J. Chondroitin-analogue decorated magnetic nanoparticles via a click reaction for selective adsorption of low-density lipoprotein. Polym. Chem. 2019, 10, 2540–2550. [Google Scholar] [CrossRef]
- Uno, H.; Ueki, Y.; Murashima, J.; Miyake, S.; Tominaga, Y.; Eguchi, K.; Katsusuke, Y. Removal of LDL from Plasma by Ad-Sorption Reduces Adhesion Molecules on Mononuclear-Cells in Patients with Arterio-Sclerotic Obliterance. Atherosclerosis 1995, 116, 93–102. [Google Scholar] [CrossRef]
- Cao, J.-F.; Xu, W.; Zhang, Y.-Y.; Shu, Y.; Wang, J.-H. Chondroitin sulfate-functionalized 3D hierarchical flower-type mesoporous silica with a superior capacity for selective isolation of low density lipoprotein. Anal. Chim. Acta 2020, 1104, 78–86. [Google Scholar] [CrossRef]
- Fang, F.; Huang, X.-J.; Guo, Y.-Z.; Hong, X.; Wu, H.-M.; Liu, R.; Chen, D.-J. Selective and Regenerable Surface Based on beta-Cyclodextrin for Low-Density Lipoprotein Adsorption. ACS J. Surf. Colloids 2018, 34, 8163–8169. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.-J.; Vienken, J.; Xu, Z.-K.; Groth, T. Bioinspired Multiple-Interaction Model Revealed in Adsorption of Low-Density Lipoprotein to Surface Containing Saccharide and Alkanesulfonate. Langmuir 2013, 29, 8363–8369. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, Y.; Deng, X.; Sun, S.; Li, Y. A novel dual-signal electrochemical sensor for bisphenol A determination by coupling nanoporous gold leaf and self-assembled cyclodextrin. Electrochim. Acta 2018, 271, 417–424. [Google Scholar] [CrossRef]
- Zhao, H.; Ji, X.; Wang, B.; Wang, N.; Li, X.; Ni, R.; Ren, J. An ultra-sensitive acetylcholinesterase biosensor based on reduced gra-phene oxide-Au nanoparticles-beta-cyclodextrin/Prussian blue-chitosan nanocomposites for organophosphorus pesticides detection. Biosens. Bioelectron. 2015, 65, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, X.; Yu, B.; Peng, X.; Liu, Y.; Wang, A.; Zhao, D.; Pang, D.; Ouyang, H.; Tang, X. Cyclodextrin Ameliorates the Progression of Atherosclerosis via Increasing High-Density Lipoprotein Cholesterol Plasma Levels and Anti-inflammatory Effects in Rabbits. J. Cardiovasc. Pharmacol. 2019, 73, 334–342. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Han, J.; Park, J.-H. Cyclodextrin polymer improves atherosclerosis therapy and reduces ototoxicity. J. Control. Release 2020, 319, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhao, H.; Li, Y.; Li, C.-P. Electrochemical simultaneous determination of hydroquinone and p-nitrophenol based on host–guest molecular recognition capability of dual β-cyclodextrin functionalized Au@graphene nanohybrids. Sens. Actuators B Chem. 2015, 207, 1–8. [Google Scholar] [CrossRef]
- Ao, M.; Gan, C.; Shao, W.; Zhou, X.; Chen, Y. Effects of cyclodextrins on the structure of LDL and its susceptibility to cop-per-induced oxidation. Eur. J. Pharm. Sci. 2016, 91, 183–189. [Google Scholar] [CrossRef]
- Li, Y.; Cai, J.; Liu, F.; Yang, H.; Lin, Y.; Li, S.; Huang, X.; Lin, L. Construction of a turn off-on fluorescent nanosensor for cholesterol based on fluorescence resonance energy transfer and competitive host-guest recognition. Talanta 2019, 201, 82–89. [Google Scholar] [CrossRef]
- Chiu, S.-H.; Chung, T.-W.; Giridhar, R.; Wu, W.-T. Immobilization of β-cyclodextrin in chitosan beads for separation of choles-terol from egg yolk. Food Res. Int. 2004, 37, 217–223. [Google Scholar] [CrossRef]
- Zheng, X.; Li, L.; Cui, K.; Zhang, Y.; Zhang, L.; Ge, S.; Yu, J. Ultrasensitive Enzyme-free Biosensor by Coupling Cyclodextrin Functionalized Au Nanoparticles and High-Performance Au-Paper Electrode. ACS Appl. Mater. Interfaces 2018, 10, 3333–3340. [Google Scholar] [CrossRef]
- Ahmad, S.A.; Ahmed, M.; Qadir, M.A.; Shafiq, M.I.; Batool, N.; Nosheen, N.; Ahmad, M.; Mahmood, R.K.; Khokhar, Z.U. Quantitation and Risk Assessment of Chemical Adulterants in Milk Using UHPLC Coupled to Photodiode Array and Differential Refractive Index Detectors. Food Anal. Methods 2016, 9, 3367–3376. [Google Scholar] [CrossRef]
- Wang, T.-T.; Xuan, R.-R.; Ma, J.-F.; Tan, Y.; Jin, Z.-F.; Chen, Y.-H.; Zhang, L.-H.; Zhang, Y.-K. Using activated attapulgite as sorbent for solid-phase extrac-tion of melamine in milk formula samples. Anal. Bioanal. Chem. 2016, 408, 6671–6677. [Google Scholar] [CrossRef]
- Abate, M.F.; Ahmed, M.G.; Li, X.; Yang, C.; Zhu, Z. Distance-based paper/PMMA integrated ELISA-chip for quantitative detec-tion of immunoglobulin G. Lab Chip 2020, 20, 3625–3632. [Google Scholar] [CrossRef]
- Cai, Y.; Jiang, Y.; Feng, L.; Hua, Y.; Liu, H.; Fan, C.; Yin, M.; Li, S.; Lv, X.; Wang, H. Q-graphene-scaffolded covalent organic frameworks as fluorescent probes and sorbents for the fluorimetry and removal of copper ions. Anal. Chim. Acta 2019, 1057, 88–97. [Google Scholar] [CrossRef]
- Grecco, C.F.; de Souza, I.D.; Queiroz, M.E.C. Recent development of chromatographic methods to determine parabens in breast milk samples: A review. J. Chromatogr. B 2018, 1093–1094, 82–90. [Google Scholar] [CrossRef]
- Sakuma, C.; Tomioka, Y.; Li, C.; Shibata, T.; Nakagawa, M.; Kurosawa, Y.; Arakawa, T.; Akuta, T. Analysis of protein denaturation, aggregation and post-translational modification by agarose native gel electrophoresis. Int. J. Biol. Macromol. 2021, 172, 589–596. [Google Scholar] [CrossRef]
- Liénard-Mayor, T.; Taverna, M.; Descroix, S.; Mai, T.D. Droplet-interfacing strategies in microscale electrophoresis for sample treatment, separation and quantification: A review. Anal. Chim. Acta 2021, 1143, 281–297. [Google Scholar] [CrossRef]
- Xiao, H.-M.; Shi, Y.; Yang, Y.-X.; Zhao, S.; Wang, X. A novel charge derivatization-direct infusion mass spectrometry method for the quantitative analysis of C1–C8 fatty acids in rubber seed oil-based biodiesel. Talanta 2021, 226, 122107. [Google Scholar] [CrossRef] [PubMed]
- Emdadi, S.; Sorouraddin, M.H.; Denanny, L. Enhanced chemiluminescence determination of paracetamol. Analyst 2021, 146, 1326–1333. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Lei, J.; Yang, M.; Li, Y.; Geng, X.; Liu, S.; Wang, J. Conical nanofluidic channel for selective quantitation of melamine in com-bination with beta-cyclodextrin and a single-walled carbon nanotube. Biosens. Bioelectron. 2019, 127, 200–206. [Google Scholar] [CrossRef]
- Abbaspour, A.; Noori, A. A cyclodextrin host–guest recognition approach to an electrochemical sensor for simultaneous quantification of serotonin and dopamine. Biosens. Bioelectron. 2011, 26, 4674–4680. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, S.S.; Gadhari, N.S.; Srivastava, A.K. Biomimetic sensor for ethambutol employing beta-cyclodextrin mediated chi-ral copper metal organic framework and carbon nanofibers modified glassy carbon electrode. Biosens. Bioelectron. 2020, 165, 112397. [Google Scholar] [CrossRef]
- Wu, S.-S.; Wei, M.; Wei, W.; Liu, Y.; Liu, S. Electrochemical aptasensor for aflatoxin B1 based on smart host-guest recognition of beta-cyclodextrin polymer. Biosens. Bioelectron. 2019, 129, 58–63. [Google Scholar] [CrossRef]
- Yang, H.; Zhu, Y.; Chen, D.; Li, C.; Chen, S.; Ge, Z. Electrochemical biosensing platforms using poly-cyclodextrin and carbon nanotube composite. Biosens. Bioelectron. 2010, 26, 295–298. [Google Scholar] [CrossRef]
- Agnihotri, N.; Chowdhury, A.D.; De, A. Non-enzymatic electrochemical detection of cholesterol using beta-cyclodextrin functionalized graphene. Biosens. Bioelectron. 2015, 63, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xue, Q.; Guo, Y. Sensitive electrochemical detection of rutin and isoquercitrin based on SH-beta-cyclodextrin func-tionalized graphene-palladium nanoparticles. Biosens. Bioelectron. 2017, 89, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Huang, Y.; Zhu, H.; Zhu, Q.; Xia, Y. Three-in-One: Sensing, Self-Assembly, and Cascade Catalysis of Cyclodextrin Modified Gold Nanoparticles. J. Am. Chem. Soc. 2016, 138, 16645–16654. [Google Scholar] [CrossRef]
- Wu, H.; Shi, C.; Zhu, Q.; Li, Y.; Xu, Z.; Wei, C.; Chen, D.; Huang, X. Capillary-driven blood separation and in-situ electrochemical detection based on 3D conductive gradient hollow fiber membrane. Biosens. Bioelectron. 2021, 171, 112722. [Google Scholar] [CrossRef]
- Matharu, Z.; Sumana, G.; Gupta, V.; Malhotra, B.D. Langmuir–Blodgett films of polyaniline for low density lipoprotein detec-tion. Thin Solid Films 2010, 519, 1110–1114. [Google Scholar] [CrossRef]
- Kaur, G.; Tomar, M.; Gupta, V. Realization of a label-free electrochemical immunosensor for detection of low density lipo-protein using NiO thin film. Biosens. Bioelectron. 2016, 80, 294–299. [Google Scholar] [CrossRef]
- Huang, H.; Liu, Z.; Yang, X. Application of electrochemical impedance spectroscopy for monitoring allergen–antibody reactions using gold nanoparticle-based biomolecular immobilization method. Anal. Biochem. 2006, 356, 208–214. [Google Scholar] [CrossRef]
Samples | C 1s (%) | O 1s (%) | S 2p (%) | Au 4f (%) |
---|---|---|---|---|
Au modified electrode | 0.82 | 0.32 | 98.86 | |
β-CD-Au modified electrode | 40.50 | 19.20 | 5.83 | 34.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Fang, F.; Wang, C.; Hong, X.; Chen, D.; Huang, X. Selective Molecular Recognition of Low Density Lipoprotein Based on β-Cyclodextrin Coated Electrochemical Biosensor. Biosensors 2021, 11, 216. https://doi.org/10.3390/bios11070216
Wu H, Fang F, Wang C, Hong X, Chen D, Huang X. Selective Molecular Recognition of Low Density Lipoprotein Based on β-Cyclodextrin Coated Electrochemical Biosensor. Biosensors. 2021; 11(7):216. https://doi.org/10.3390/bios11070216
Chicago/Turabian StyleWu, Huimin, Fei Fang, Chengcheng Wang, Xiao Hong, Dajing Chen, and Xiaojun Huang. 2021. "Selective Molecular Recognition of Low Density Lipoprotein Based on β-Cyclodextrin Coated Electrochemical Biosensor" Biosensors 11, no. 7: 216. https://doi.org/10.3390/bios11070216
APA StyleWu, H., Fang, F., Wang, C., Hong, X., Chen, D., & Huang, X. (2021). Selective Molecular Recognition of Low Density Lipoprotein Based on β-Cyclodextrin Coated Electrochemical Biosensor. Biosensors, 11(7), 216. https://doi.org/10.3390/bios11070216