Lipid–Polymer Hybrids Encapsulating Iron-Oxide Nanoparticles as a Label for Lateral Flow Immunoassays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis and Characterization of SPIONs
2.2.1. Synthesis of SPIONs
2.2.2. Preparation of Hybrid Nanoparticles Encapsulating SPIONs
2.3. Bioconjugation of Lipid–Polymer SPIONs
2.4. Characterization of Nanoparticles Conjugates
2.4.1. Dynamic Light Scattering and Zeta Potential
2.4.2. Transmission Electron Microscopy
2.5. Lateral Flow Assays
Preparation of the Strips
3. Results and Discussion
3.1. Characterization of the Lipid–Polymer SPIONs before Bioconjugation
3.2. Biotin–Neutravidin Affinity Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xianyu, Y.; Wang, Q.; Chen, Y. Magnetic particles-enabled biosensors for point-of-care testing. TrAC Trends Anal. Chem. 2018, 106, 213–224. [Google Scholar] [CrossRef]
- Connolly, R.; O’ Kennedy, R. Magnetic lateral flow immunoassay test strip development—Considerations for proof of concept evaluation. Methods 2017, 116, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yang, D.; Liu, G. Signal amplification strategies for paper-based analytical devices. Biosens. Bioelectron. 2019, 136, 60–75. [Google Scholar] [CrossRef] [PubMed]
- Antiochia, R. Paper-Based Biosensors: Frontiers in Point-of-Care Detection of COVID-19 Disease. Biosensors 2021, 11, 110. [Google Scholar] [CrossRef]
- Sajid, M.; Kawde, A.N.; Daud, M. Designs, formats and applications of lateral flow assay: A literature review. J. Saudi Chem. Soc. 2015, 19, 689–705. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Chen, S.; Guo, J.; Ma, X. Nanomaterial Labels in Lateral Flow Immunoassays for Point-of-Care-Testing. J. Mater. Sci. Technol. 2021, 60, 90–104. [Google Scholar] [CrossRef]
- Moyano, A.; Serrano-pertierra, E.; Salvador, M.; Martínez-garcía, J.C. Magnetic Lateral Flow Immunoassays. Diagnostics 2020, 10, 288. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Z.; Zhai, X.; Li, Y.; Lin, L.; Zhao, H.; Bian, L.; Li, P.; Yu, L.; Wu, Y.; et al. Rapid and Sensitive Detection of anti-SARS-CoV-2 IgG, Using Lanthanide-Doped Nanoparticles-Based Lateral Flow Immunoassay. Anal. Chem. 2020, 92, 7226–7231. [Google Scholar] [CrossRef]
- Yamada, K.; Shibata, H.; Suzuki, K.; Citterio, D. Toward practical application of paper-based microfluidics for medical diagnostics: State-of-the-art and challenges. Lab Chip 2017, 17, 1206–1249. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Yue, W.; Yang, M. Nanoparticle-based signal generation and amplification in microfluidic devices for bioanalysis. Analyst 2013, 138, 6709–6720. [Google Scholar] [CrossRef]
- Estelrich, J.; Escribano, E.; Queralt, J.; Busquets, M.A. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int. J. Mol. Sci. 2015, 16, 8070–8101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zia, M.; Phull, A.R.; Ali, J.S. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67. [Google Scholar] [CrossRef] [Green Version]
- Ha, Y.; Ko, S.; Kim, I.; Huang, Y.; Mohanty, K.; Huh, C.; Maynard, J.A. Recent Advances Incorporating Superparamagnetic Nanoparticles into Immunoassays. ACS Appl. Nano Mater. 2018, 1, 512–521. [Google Scholar] [CrossRef] [Green Version]
- Salvador, M.; Moyano, A.; Martínez-García, J.C.; Blanco-López, M.C.; Rivas, M. Synthesis of Superparamagnetic Iron Oxide Nanoparticles: SWOT Analysis Towards Their Conjugation to Biomolecules for Molecular Recognition Applications. J. Nanosci. Nanotechnol. 2019, 19, 4839–4856. [Google Scholar] [CrossRef] [PubMed]
- Farhanian, D.; De Crescenzo, G.; Tavares, J.R. Large-Scale Encapsulation of Magnetic Iron Oxide Nanoparticles via Syngas Photo-Initiated Chemical Vapor Deposition. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Inozemtseva, O.A.; German, S.V.; Navolokin, N.A.; Bucharskaya, A.B.; Maslyakova, G.N.; Gorin, D.A. Encapsulated Magnetite Nanoparticles: Preparation and Application as Multifunctional Tool for Drug Delivery Systems; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 175–192. ISBN 9780128138854. [Google Scholar]
- Mukherjee, A.; Waters, K.; Kalyan, P.; Achrol, A.S. Lipid—Polymer hybrid nanoparticles as a next- generation drug delivery platform: State of the art, emerging technologies, and perspectives. Int. J. Nanomed. 2019, 14, 1937–1952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bose, R.J.C.; Lee, S.H.; Park, H. Lipid-based surface engineering of PLGA nanoparticles for drug and gene delivery applications. Biomater. Res. 2016, 20, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release 2012, 161, 505–522. [Google Scholar] [CrossRef] [PubMed]
- Salvador, M.; Gutiérrez, G.; Noriega, S.; Moyano, A.; Blanco-López, M.C.; Matos, M. Microemulsion synthesis of superparamagnetic nanoparticles for bioapplications. Int. J. Mol. Sci. 2021, 22, 427. [Google Scholar] [CrossRef] [PubMed]
- Moyano, A.; Serrano-Pertierra, E.; Salvador, M.; Martínez-García, J.C.; Piñeiro, Y.; Yañez-Vilar, S.; Gónzalez-Gómez, M.; Rivas, J.; Rivas, M.; Carmen Blanco-López, M. Carbon-coated superparamagnetic nanoflowers for biosensors based on lateral flow immunoassays. Biosensors 2020, 10, 80. [Google Scholar] [CrossRef]
- Haley, W.E. The Principles and Applications of Avidin-Based Nanoparticles in Drug Delivery and Diagnosis. Physiol. Behav. 2017, 176, 139–148. [Google Scholar] [CrossRef] [Green Version]
Sample | Microemulsion Formulation (% w/w) | Size (nm) | |||
---|---|---|---|---|---|
CTAB | 1-Butanol | 1-Hexanol | Water Phase | ||
1 | 24 | 16 | 45 | 15 | 5.4 |
2 | 15 | 10 | 57 | 18 | 6.6 |
Formulation | Size (nm) | PDI | Zeta Potential (mV) |
---|---|---|---|
Empty | 80 | 0.243 | −0.3 |
F1 (dispersed in organic phase) | 82.34 | 0.263 | −12.6 |
F2 (dispersed in organic phase) | 89.45 | 0.345 | −13.3 |
F1 (dispersed in water phase) | 83.59 | 0.230 | −13.43 |
F2 (dispersed in water phase) | 99.87 | 0.229 | −7.3 |
Formulation | Size (nm) (Before Conjugation) | Size (nm) (After Conjugation) | PDI |
---|---|---|---|
F1 (dispersed in organic phase) | 82.34 | 136.68 | 0.253 |
F2 (dispersed in organic phase) | 89.45 | 150.35 | 0.225 |
F1 (dispersed in water phase) | 83.59 | 164 | 0.230 |
F2 (dispersed in water phase) | 99.87 | 142 | 0.234 |
Type of Nanoparticles | X-Pos (mm) | Intensity (mV) | Peak Start (mm) | Peak End (mm) | Height (mV) | Area (mm × mv) |
---|---|---|---|---|---|---|
SPIONs in PLGA–PVA/PC | 25.48 | 1164 | 24.48 | 26.48 | 752.84 | 702.15 |
Gold | 24.96 | 255 | 24.04 | 26.04 | 619.68 | 469.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bazsefidpar, S.; Moyano, A.; Gutiérrez, G.; Matos, M.; Blanco-López, M.C. Lipid–Polymer Hybrids Encapsulating Iron-Oxide Nanoparticles as a Label for Lateral Flow Immunoassays. Biosensors 2021, 11, 218. https://doi.org/10.3390/bios11070218
Bazsefidpar S, Moyano A, Gutiérrez G, Matos M, Blanco-López MC. Lipid–Polymer Hybrids Encapsulating Iron-Oxide Nanoparticles as a Label for Lateral Flow Immunoassays. Biosensors. 2021; 11(7):218. https://doi.org/10.3390/bios11070218
Chicago/Turabian StyleBazsefidpar, Shayesteh, Amanda Moyano, Gemma Gutiérrez, María Matos, and María Carmen Blanco-López. 2021. "Lipid–Polymer Hybrids Encapsulating Iron-Oxide Nanoparticles as a Label for Lateral Flow Immunoassays" Biosensors 11, no. 7: 218. https://doi.org/10.3390/bios11070218
APA StyleBazsefidpar, S., Moyano, A., Gutiérrez, G., Matos, M., & Blanco-López, M. C. (2021). Lipid–Polymer Hybrids Encapsulating Iron-Oxide Nanoparticles as a Label for Lateral Flow Immunoassays. Biosensors, 11(7), 218. https://doi.org/10.3390/bios11070218