Impedimetric and Plasmonic Sensing of Collagen I Using a Half-Antibody-Supported, Au-Modified, Self-Assembled Monolayer System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation of the Half-Antibody Fragment
2.3. Fabrication of the Immunosensor to Estimate Collagen I
2.4. Collagen I Detection Using Au/TBBT/AuNPs/half-IgG
2.5. Electrochemical Measurements
2.6. Atomic Force Microscopy Analyses
2.7. Surface Plasmon Resonance Measurements
3. Results
3.1. Characterization of Nano-Enabled SAM Using Atomic Force Microscopy
3.2. SPR-Assisted Confirmation of Half-Antibody Fragment Collagen I Immobilization
3.3. Electrochemical Characterization of the Immunosensor Fabrication
3.4. EIS-Based Collagen Type I Immunosensing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, T.R.; Choi, J.; Bandodkar, A.J.; Krishnan, S.; Gutruf, P.; Tian, L.; Ghaffari, R.; Rogers, J.A. Bio-integrated wearable systems: A comprehensive review. Chem. Rev. 2019, 5461–5533. [Google Scholar] [CrossRef] [PubMed]
- Mujawar, M.A.; Gohel, H.; Bhardwaj, S.K.; Srinivasan, S.; Hickman, N.; Kaushik, A. Nano-enabled biosensing systems for intelligent healthcare: Towards COVID-19 management. Mater. Today Chem. 2020, 17, 100306. [Google Scholar] [CrossRef] [PubMed]
- Gelse, K.; Po, E.; Aigner, T. Collagens—Structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 2003, 55, 1531–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gwiazda, M.; Kumar, S.; Świeszkowski, W.; Ivanovski, S.; Vaquette, C. The effect of melt electrospun writing fiber orientation onto cellular organization and mechanical properties for application in Anterior Cruciate Ligament tissue engineering. J. Mech. Behav. Biomed. Mater. 2020, 104, 103631. [Google Scholar] [CrossRef]
- Miller, E.J. Collagen types: Structure, distribution, and functions. In Collagen: Volume I: Biochemistry; Marcel, E.N., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 139–156. [Google Scholar]
- Kew, S.J.; Gwynne, J.H.; Enea, D.; Abu-rub, M.; Pandit, A.; Zeugolis, D.; Brooks, R.A.; Rushton, N.; Best, S.M.; Cameron, R.E. Acta Biomaterialia Regeneration and repair of tendon and ligament tissue using collagen fibre biomaterials. Acta Biomater. 2011, 7, 3237–3247. [Google Scholar] [CrossRef] [PubMed]
- Prabhakaran, M.P.; Swieszkowski, W.; Kurzydlowski, K.J. Electrospun bio-composite P (LLA-CL)/collagen I/collagen III scaffolds for nerve tissue engineering. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 1093–1102. [Google Scholar] [CrossRef]
- Rinoldi, C.; Costantini, M.; Kijen, E.; Heljak, M.; Monika, C.; Buda, R.; Baldi, J.; Cannata, S.; Guzowski, J.; Gargioli, C.; et al. Tendon Tissue Engineering: Effects of Mechanical and Biochemical Stimulation on Stem Cell Alignment on Cell-Laden Hydrogel Yarns. Adv. Healthc. Mater. 2019, 1801218, 1–10. [Google Scholar] [CrossRef]
- Maffulli, N.; Longo, U.G.; Kadakia, A.; Spiezia, F. Achilles tendinopathy. Foot Ankle Surg. 2020, 26, 240–249. [Google Scholar] [CrossRef]
- O’Brien, T.D.; Reeves, N.D.; Baltzopoulos, V.; Jones, D.A.; Maganaris, C.N. Mechanical properties of the patellar tendon in adults and children. J. Biomech. 2010, 43, 1190–1195. [Google Scholar] [CrossRef]
- Rein, S.; Hagert, E.; Schneiders, W.; Fieguth, A.; Zwipp, H. Histological analysis of the structural composition of ankle ligaments. Foot Ankle Int. 2015, 36, 211–224. [Google Scholar] [CrossRef] [Green Version]
- Thorpe, C.T.; Screen, H.R.C. Tendon structure and composition. Adv. Exp. Med. Biol. 2016, 3–10. [Google Scholar] [CrossRef]
- Theobald, P.; Benjamin, M.; Nokes, L.; Pugh, N. Review of the vascularisation of the human Achilles tendon. Injury 2005, 36, 1267–1272. [Google Scholar] [CrossRef] [PubMed]
- Olesen, J.L.; Langberg, H.; Heinemeier, K.M.; Flyvbjerg, A.; Kjær, M. Determination of markers for collagen type I turnover in peritendinous human tissue by microdialysis: Effect of catheter types and insertion trauma. Scand. J. Rheumatol. 2006, 35, 312–317. [Google Scholar] [CrossRef]
- Lipman, K.; Wang, C.; Ting, K.; Soo, C.; Zheng, Z. Tendinopathy: Injury, repair, and current exploration. Drug Des. Devel. Ther. 2018, 12, 591. [Google Scholar] [CrossRef] [Green Version]
- Buckley, M.R.; Evans, E.B.; Matuszewski, P.E.; Chen, Y.L.; Satchel, L.N.; Elliott, D.M.; Soslowsky, L.J.; Dodge, G.R. Distributions of types I, II and III collagen by region in the human supraspinatus tendon. Connect. Tissue Res. 2013, 54, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Williams, I.F.; McCullagh, K.G.; Silver, I.A. The distribution of types I and III collagen and fibronectin in the healing equine tendon. Connect. Tissue Res. 1984, 12, 211–227. [Google Scholar] [CrossRef]
- Kaushik, B.K.; Singh, L.; Singh, R.; Zhu, G.; Zhang, B.; Wang, Q.; Kumar, S. Detection of Collagen-IV Using Highly Reflective Metal Nanoparticles-Immobilized Photosensitive Optical Fiber-Based MZI Structure. IEEE Trans. Nanobioscience 2020, 19, 477–484. [Google Scholar] [CrossRef]
- Etherington, D.J.; Sims, T.J. Detection and estimation of collagen. J. Sci. Food Agric. 1981, 32, 539–546. [Google Scholar] [CrossRef]
- Cissell, D.D.; Link, J.M.; Hu, J.C.; Athanasiou, K.A. A Modified Hydroxyproline Assay Based on Hydrochloric Acid in Ehrlich’s Solution Accurately Measures Tissue Collagen Content. Tissue Eng. Part C Methods 2017, 23, 243–250. [Google Scholar] [CrossRef]
- Yasmin, H.; Kabashima, T.; Rahman, M.S.; Shibata, T.; Kai, M. Amplified and selective assay of collagens by enzymatic and fluorescent reactions. Sci. Rep. 2014, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Goodarzi, Z.; Maghrebi, M.; Zavareh, A.F.; Mokhtari-Hosseini, Z.-B.; Ebrahimi-hoseinzadeh, B.; Zarmi, A.H.; Barshan-tashnizi, M. Evaluation of nicotine sensor based on copper nanoparticles and carbon nanotubes. J. Nanostructure Chem. 2015, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Shown, I.; Ganguly, A. Non-covalent functionalization of CVD-grown graphene with Au nanoparticles for electrochemical sensing application. J. Nanostructure Chem. 2016, 6, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, S.K.; Yadav, P.; Ghosh, S.; Basu, T.; Mahapatro, A.K. Biosensing Test-Bed Using Electrochemically Deposited Reduced Graphene Oxide. ACS Appl. Mater. Interfaces 2016, 8, 24350–24360. [Google Scholar] [CrossRef]
- Bhardwaj, S.K.; Chauhan, R.; Yadav, P.; Ghosh, S.; Mahapatro, A.K.; Singh, J.; Basu, T. Bi-enzyme functionalized electro-chemically reduced transparent graphene oxide platform for triglyceride detection. Biomater. Sci. 2019, 7, 1598–1606. [Google Scholar] [CrossRef]
- Bhardwaj, S.K.; Basu, T.; Mahapatro, A.K. Triglyceride detection using reduced graphene oxide on ITO surface. Integr. Ferroelectr. 2017, 184, 92–98. [Google Scholar] [CrossRef]
- Fuletra, I.; Gupta, C.; Nisar, S.; Bharadwaj, R.; Saluja, P.; Bhardwaj, S.K.; Asokan, K.; Basu, T. Self-assembled gold nano islands for precise electrochemical sensing of trace level of arsenic in water. Groundw. Sustain. Dev. 2020, 12, 100528. [Google Scholar] [CrossRef]
- Bhardwaj, S.K.; Mahapatro, A.K.; Basu, T. Benzymatic triglyceride biosensor based on electrochemically reduced graphene oxide. Int. J. ChemTech Res. 2015, 7, 858–866. [Google Scholar]
- Paliwal, P.; Sargolzaei, S.; Bhardwaj, S.K.; Bhardwaj, V.; Dixit, C.; Kaushik, A. Grand Challenges in Bio-Nanotechnology to Manage the COVID-19 Pandemic. Front. Nanotechnol. 2020, 2, 3389. [Google Scholar] [CrossRef]
- Jeong, M.L.; Hyun, K.P.; Jung, Y.; Jin, K.K.; Sun, O.J.; Bong, H.C. Direct immobilization of protein G variants with various numbers of cysteine residues on a gold surface. Anal. Chem. 2007, 79, 2680–2687. [Google Scholar]
- Neumann, L.; Wohland, T.; Whelan, R.J.; Zare, R.N.; Kobilka, B.K. Functional immobilization of a ligand-activated G-protein-coupled receptor. ChemBioChem 2002, 3, 993–998. [Google Scholar] [CrossRef]
- Chammem, H.; Hafaid, I.; Bohli, N.; Garcia, A.; Meilhac, O.; Abdelghani, A.; Mora, L. A disposable electrochemical sensor based on protein G for High-Density Lipoprotein (HDL) detection. Talanta 2015, 144, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, D.M.; Rasmussen, S.G.F.; Kobilka, B.K. The structure and function of G-protein-coupled receptors. Nature 2009, 459, 356–363. [Google Scholar] [CrossRef] [Green Version]
- Jarocka, U.; Sawicka, R.; Góra-Sochacka, A.; Sirko, A.; Zagórski-Ostoja, W.; Radecki, J.; Radecka, H. Electrochemical immunosensor for detection of antibodies against influenza A virus H5N1 in hen serum. Biosens. Bioelectron. 2014, 55, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Trilling, A.K.; Beekwilder, J.; Zuilhof, H. Antibody orientation on biosensor surfaces: A minireview. Analyst 2013, 138, 1619–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choe, W.; Durgannavar, T.A.; Chung, S.J. Fc-binding ligands of immunoglobulin G: An overview of high affinity proteins and peptides. Materials 2016, 9, 994. [Google Scholar] [CrossRef] [Green Version]
- Tajima, N.; Takai, M.; Ishihara, K. Significance of antibody orientation unraveled: Well-oriented antibodies recorded high binding affinity. Anal. Chem. 2011, 83, 1969–1976. [Google Scholar] [CrossRef]
- Zhang, B.; Song, W.; Pang, P.; Lai, H.; Chen, Q.; Zhang, P.; Lindsay, S. Role of contacts in long-range protein conductance. Proc. Natl. Acad. Sci. USA 2019, 116, 5886–5891. [Google Scholar] [CrossRef] [Green Version]
- Jarocka, U.; Sawicka, R.; Stachyra, A.; Góra-Sochacka, A.; Sirko, A.; Zagórski-Ostoja, W.; Saczyńska, V.; Porebska, A.; Dehaen, W.; Radecki, J.; et al. A biosensor based on electroactive dipyrromethene-Cu(II) layer deposited onto gold electrodes for the detection of antibodies against avian influenza virus type H5N1 in hen sera. Anal. Bioanal. Chem. 2017, 407, 7807–7814. [Google Scholar] [CrossRef] [PubMed]
- Radecki, J.; Radecka, H. Mechanisms of Analytical Signals Generated by Electrochemical Genosensors: Review. J. Mex. Chem. Soc. 2015, 59, 276–281. [Google Scholar]
- Malecka, K.; Stachyra, A.; Góra-Sochacka, A.; Sirko, A.; Zagórski-Ostoja, W.; Dehaen, W.; Radecka, H.; Radecki, J. New redox-active layer create via epoxy-amine reaction—The base of genosensor for the detection of specific DNA and RNA sequences of avian influenza virus H5N1. Biosens. Bioelectron. 2015, 65, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Piro, B.; Reisberg, S. Recent advances in electrochemical immunosensors. Sensors 2017, 17, 794. [Google Scholar] [CrossRef]
- Ben Aissa, S.; Mars, A.; Catanante, G.; Marty, J.L.; Raouafi, N. Design of a redox-active surface for ultrasensitive redox capacitive aptasensing of aflatoxin M1 in milk. Talanta 2019, 195, 525–532. [Google Scholar] [CrossRef]
- Santos, A.; Bueno, P.R.; Davis, J.J. A dual marker label free electrochemical assay for Flavivirus dengue diagnosis. Biosens. Bioelectron. 2018, 100, 519–525. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Liu, S.; Ge, S.; Yan, M.; Yu, J.; Hu, X. Ultrasensitive electrochemical immunosensor based on Au nanoparticles dotted carbon nanotube-graphene composite and functionalized mesoporous materials. Biosens. Bioelectron. 2012, 33, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Chatterjee, S. Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 2013, 42, 5425–5438. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Qi, M.; Zhang, Y.; Cao, C.; Goldys, E.M. Nanocomposites of gold nanoparticles and graphene oxide towards an stable label-free electrochemical immunosensor for detection of cardiac marker troponin-I. Anal. Chim. Acta 2016, 909, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Peng, D.; Liang, R.P.; Huang, H.; Qiu, J.D. Electrochemical immunosensor for carcinoembryonic antigen based on signal amplification strategy of graphene and Fe3O4/Au NPs. J. Electroanal. Chem. 2016, 761, 112–117. [Google Scholar] [CrossRef]
- Malarkodi, C.; Rajeshkumar, S.; Vanaja, M.; Paulkumar, K.; Gnanajobitha, G.; Annadurai, G. Eco-friendly synthesis and characterization of gold nanoparticles using Klebsiella pneumoniae. J. Nanostructure Chem. 2013, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Jarocka, U.; Sawicka, R.; Góra-Sochacka, A.; Sirko, A.; Dehaen, W.; Radecki, J.; Radecka, H. An electrochemical immunosensor based on a 4,4′-thiobisbenzenethiol self-assembled monolayer for the detection of hemagglutinin from avian influenza virus H5N1. Sens. Actuators B Chem. 2016, 228, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Jarocka, U.; Wasowicz, M.; Radecka, H.; Malinowski, T.; Michalczuk, L.; Radecki, J. Impedimetric immunosensor for detection of plum pox virus in plant extracts. Electroanalysis 2011, 23, 2197–2204. [Google Scholar] [CrossRef]
- Wasowicz, M.; Viswanathan, S.; Dvornyk, A.; Grzelak, K.; Kłudkiewicz, B.; Radecka, H. Comparison of electrochemical immunosensors based on gold nano materials and immunoblot techniques for detection of histidine-tagged proteins in culture medium. Biosens. Bioelectron. 2008, 24, 284–389. [Google Scholar] [CrossRef]
- Wasowicz, M.; Milner, M.; Radecka, D.; Grzelak, K.; Radecka, H. Immunosensor incorporating Anti-His (C-term) IgG F(ab’) fragments attached to gold nanorods for detection of His-tagged proteins in culture medium. Sensors 2010, 10, 5409–5424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubira, R.J.G.; Camacho, S.A.; Martin, C.S.; Mejía-Salazar, J.R.; Gómez, F.R.; da Silva, R.R.; de Oliveira Junior, O.N.; Alessio, P.; Constantino, C.J.L. Designing silver nanoparticles for detecting levodopa (3,4-dihydroxyphenylalanine, l-dopa) using surface-enhanced raman scattering (SERS). Sensors 2020, 20, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhalla, N.; Di Lorenzo, M.; Pula, G.; Estrela, P. Protein phosphorylation detection using dual-mode field-effect devices and nanoplasmonic sensors. Sci. Rep. 2015, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Formisano, N.; Bhalla, N.; Wong, L.C.C.; Di Lorenzo, M.; Pula, G.; Estrela, P. Multimodal electrochemical and nanoplasmonic biosensors using ferrocene-crowned nanoparticles for kinase drug discovery applications. Electrochem. Commun. 2015, 57, 70–73. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Wu, Z.; Wang, H.; Shen, G.; Yu, R. A reusable capacitive immunosensor with a novel immobilization procedure based on 1,6-hexanedithiol and nano-Au self-assembled layers. Sens. Actuators B Chem. 2005, 110, 327–334. [Google Scholar] [CrossRef]
- Kausaite-Minkstimiene, A.; Ramanaviciene, A.; Kirlyte, J.; Ramanavicius, A. Comparative study of random and oriented antibody immobilization techniques on the binding capacity of immunosensor. Anal. Chem. 2010, 82, 6401–6408. [Google Scholar] [CrossRef] [PubMed]
- Bonroy, K.; Frederix, F.; Reekmans, G.; Dewolf, E.; De Palma, R.; Borghs, G.; Declerck, P.; Goddeeris, B. Comparison of random and oriented immobilisation of antibody fragments on mixed self-assembled monolayers. J. Immunol. Methods 2006, 312, 167–181. [Google Scholar] [CrossRef] [PubMed]
- Matula, R.A. Electrical resistivity of copper, gold, palladium, and silver. J. Phys. Chem. Ref. Data 1979, 8, 1147–1298. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, G.; Tripathi, K.; Okyem, S.; Driskell, J.D. PH Impacts the Orientation of Antibody Adsorbed onto Gold Nanoparticles. Bioconjug. Chem. 2019, 30, 1182–1191. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.; Mutharasan, R. Half antibody fragments improve biosensor sensitivity without loss of selectivity. Anal. Chem. 2013, 85, 2472–2477. [Google Scholar] [CrossRef] [PubMed]
- Brett, C. Electrochemical Impedance Spectroscopy for Characterization of Electrochemical Sensors and Biosensors. ECS Trans. 2019, 13, 67. [Google Scholar] [CrossRef]
- Luo, Y.; Packard, R.; Abiri, P.; Tai, Y.C.; Hsiai, T.K. Flexible intravascular EIS sensors for detecting metabolically active plaque. Interfacing Bioelectron. Biomed. Sens. 2020, 143–162. [Google Scholar] [CrossRef]
- Pejcic, B.; De Marco, R. Impedance spectroscopy: Over 35 years of electrochemical sensor optimization. Electrochim. Acta 2006, 51, 6217–6229. [Google Scholar] [CrossRef]
- Halliwell, J.; Savage, A.C.; Buckley, N.; Gwenin, C. Electrochemical impedance spectroscopy biosensor for detection of active botulinum neurotoxin. Sens. Bio-Sensing Res. 2014, 2, 12–15. [Google Scholar] [CrossRef] [Green Version]
- Manickam, P.; Vashist, A.; Madhu, S.; Sadasivam, M.; Sakthivel, A.; Kaushik, A.; Nair, M. Gold nanocubes embedded biocompatible hybrid hydrogels for electrochemical detection of H2O2. Bioelectrochemistry 2020, 131, 107373. [Google Scholar] [CrossRef]
- Ahangar, L.E.; Mehrgardi, M.A. Amplified detection of hepatitis B virus using an electrochemical DNA biosensor on a nanoporous gold platform. Bioelectrochemistry 2017, 131, 107373. [Google Scholar] [CrossRef]
- Xuan, J.; Jia, X.D.; Jiang, L.P.; Abdel-Halim, E.S.; Zhu, J.J. Gold nanoparticle-assembled capsules and their application as hydrogen peroxide biosensor based on hemoglobin. Bioelectrochemistry 2012, 84, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Emoto, K.; Jin, Y.; Shimizu, A.; Tamma, V.A.; Zhang, W. Controlled self-assembly of gold nanoparticles mediated by novel organic molecular cages. Opt. Mater. Express 2013, 3, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Khlebtsov, B.N.; Khlebtsov, N.G. On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Colloid J. 2011, 73, 118–127. [Google Scholar] [CrossRef]
- Philip, D. Synthesis and spectroscopic characterization of gold nanoparticles. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 71, 80–85. [Google Scholar] [CrossRef]
- Stroth, N. A surface plasmon resonance-based method for monitoring interactions between G protein-coupled receptors and interacting proteins. J. Biol. Methods 2016, 3, 155–181. [Google Scholar] [CrossRef] [Green Version]
- Locatelli-Hoops, S.; Yeliseev, A.A.; Gawrisch, K.; Gorshkova, I. Surface plasmon resonance applied to G protein-coupled receptors. Biomed. Spectrosc. Imaging 2013, 2, 155–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhardwaj, S.K.; Basu, T. Study on binding phenomenon of lipase enzyme with tributyrin on the surface of graphene oxide array using surface plasmon resonance. Thin Solid Films 2018, 645, 10–181. [Google Scholar] [CrossRef]
- Zhao, H.; Gorshkova, I.I.; Fu, G.L.; Schuck, P. A comparison of binding surfaces for SPR biosensing using an antibody-antigen system and affinity distribution analysis. Methods 2013, 59, 328–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Lv, W.; Wu, J.; Li, H.; Li, F. In situ generated nanozyme-initiated cascade reaction for amplified surface plasmon resonance sensing. Chem. Commun. 2020. [Google Scholar] [CrossRef]
- Wang, X.; Hou, T.; Lin, H.; Lv, W.; Li, H.; Li, F. In situ template generation of silver nanoparticles as amplification tags for ultrasensitive surface plasmon resonance biosensing of microRNA. Biosens. Bioelectron. 2019, 39, 124–132. [Google Scholar] [CrossRef]
- Li, H.; Chang, J.; Hou, T.; Li, F. HRP-Mimicking DNAzyme-Catalyzed in Situ Generation of Polyaniline to Assist Signal Amplification for Ultrasensitive Surface Plasmon Resonance Biosensing. Anal. Chem. 2017, 89, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Gai, P.; Hou, T.; Li, H.; Xue, C.; Li, F. Enzymatic Fuel Cell-Based Self-Powered Homogeneous Immunosensing Platform via Target-Induced Glucose Release: An Appealing Alternative Strategy for Turn-On Melamine Assay. ACS Appl. Mater. Interfaces 2017, 9, 35721–35728. [Google Scholar] [CrossRef]
- De Juan-Franco, E.; Caruz, A.; Pedrajas, J.R.; Lechuga, L.M. Site-directed antibody immobilization using a protein A-gold binding domain fusion protein for enhanced SPR immunosensing. Analyst 2013, 138, 2023–2031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soh, N.; Tokuda, T.; Watanabe, T.; Mishima, K.; Imato, T.; Masadome, T.; Asano, Y.; Okutani, S.; Niwa, O.; Brown, S. A surface plasmon resonance immunosensor for detecting a dioxin precursor using a gold binding polypeptide. Talanta 2003, 60, 733–745. [Google Scholar] [CrossRef]
- Li, G.; Li, X.; Yang, M.; Chen, M.M.; Chen, L.C.; Xiong, X.L. A gold nanoparticles enhanced surface plasmon resonance immunosensor for highly sensitive detection of Ischemia-modified albumin. Sensors 2013, 13, 12794–12803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Liu, H.; Liang, X.M.; Wu, X.; Wang, B.; Zhang, Q. Highly sensitive nanomechanical immunosensor using half antibody fragments. Anal. Chem. 2014, 86, 4271–4277. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Tang, T.; Jed Harrison, D.; Lee, W.E.; Jemere, A.B. A regenerating ultrasensitive electrochemical impedance immunosensor for the detection of adenovirus. Biosens. Bioelectron. 2015, 68, 129–134. [Google Scholar] [CrossRef]
- Swartz, M.E.; Krull, I.S. Handbook of Analytical Validation; CRC Press: Boca Raton, FL, USA, 2012; p. 384. [Google Scholar] [CrossRef]
- Srivastava, A.K.; MacFarlane, G.; Srivastava, V.P.; Mohan, S.; Baylink, D.J. A new monoclonal antibody ELISA for detection and characterization of C-telopeptide fragments of type I collagen in urine. Calcif. Tissue Int. 2001, 69, 327–336. [Google Scholar] [CrossRef]
- Sun, X.; Fan, J.; Ye, W.; Zhang, H.; Cong, Y.; Xiao, J. A highly specific graphene platform for sensing collagen triple helix. J. Mater. Chem. B 2016, 4, 1064–1069. [Google Scholar] [CrossRef] [PubMed]
- Sankiewicz, A.; Lukaszewski, Z.; Trojanowska, K.; Gorodkiewicz, E. Determination of collagen type IV by Surface Plasmon Resonance Imaging using a specific biosensor. Anal. Biochem. 2016, 515, 40–46. [Google Scholar] [CrossRef]
- Leeming, D.J.; He, Y.; Veidal, S.S.; Nguyen, Q.H.T.; Larsen, D.V.; Koizumi, M.; Segovia-Silvestre, T.; Zhang, C.; Zheng, Q.; Sun, S.; et al. A novel marker for assessment of liver matrix remodeling: An enzyme-linked immunosorbent assay (ELISA) detecting a MMP generated type I collagen neo-epitope (C1M). Biomarkers 2011, 16, 616–628. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.J.; Nedergaard, A.F.; Sun, S.; Veidal, S.S.; Larsen, L.; Zheng, Q.; Suetta, C.; Henriksen, K.; Christiansen, C.; Karsdal, M.A.; et al. The neo-epitope specific PRO-C3 ELISA measures true formation of type III collagen associated with liver and muscle parameters. Am. J. Transl. Res. 2013, 5, 303. [Google Scholar]
- Hua, X.; Wang, Y.Y.; Jia, P.; Xiong, Q.; Hu, Y.; Chang, Y.; Lai, S.; Xu, Y.; Zhao, Z.; Song, J. Multi-level transcriptome sequencing identifies COL1A1 as a candidate marker in human heart failure progression. BMC Med. 2020, 18, 1–16. [Google Scholar] [CrossRef]
- Rega, R.; Mugnano, M.; Oleandro, E.; Tkachenko, V.; del Giudice, D.; Bagnato, G.; Ferraro, P.; Grilli, S.; Gangemi, S. Detecting collagen molecules at picogram level through electric field-induced accumulation. Sensors 2020, 18, 3567. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.T.; Thornton, J.T.; Kissinger, P.T.; Duh, S.H. Discovering of collagen-1’s role in producing superconducting current in nanobiomimetic superlattice structured organometallic devices at room temperature enabled direct quantitation of sub pg/mL collagen-1. Inform. Electron. Microsyst. TechConnect Briefs. 2018, 1, 43–46. [Google Scholar]
- Lisdat, F.; Schäfer, D. The use of electrochemical impedance spectroscopy for biosensing. Anal. Bioanal. Chem. 2008, 391, 1555–1567. [Google Scholar] [CrossRef] [PubMed]
- Pal, K.; Asthana, N.; Aljabali, A.A.; Bhardwaj, S.K.; Kralj, S.; Penkova, A.; Thomas, A.; Zaheer, T.S.N.; Souza, F.G. A critical review on multifunctional smart materials ‘nanographene’ emerging avenue: Nano-imaging and biosensor applications. Crit. Rev. Solid State Mater. Sci. 2021, 122, 1–18. [Google Scholar] [CrossRef]
Samples | Ret (Ω) | Rs (Ω) | CPE (F) |
---|---|---|---|
Au/TBBT | 560 × 103 | 13 | 1.07 × 10−4 |
Au/TBBT/AuNPs | 120 × 103 | 7.4 | 2.46 × 10−4 |
Au/TBBT/AuNPs/half-IgG | 256 × 103 | 9.7 | 1.28 × 10−4 |
Au/TBBT/AuNPs/half-IgG/BSA | 563 × 103 | 16 | 1.71 × 10−4 |
Method of Measurement | Type of Collagen | Type of Sample | Detection Limit | Range of Detection | References |
---|---|---|---|---|---|
ELISA | collagen I | synthetic C peptide fragments of type I collagen (α−1) | 10 ng/mL | 10–1000 ng/mL | [88] |
Fluorescence Assays | collagen triple helix GPO | synthetic collagen triple helix GPO | 30 nM | 100–1000 nM | [89] |
Surface Plasmon Resonance Imaging (SPRI) | collagen IV | human blood plasma | 2.4 ng/mL | 10–1000 ng/mL | [90] |
ELISA | collagen I | human serum | 0.83 ng/mL | 0.83–500 ng/mL | [91] |
ELISA | collagen III | human serum | 0.6 ng/mL | 0.9–200 ng/mL | [92] |
Localized Surface Plasmon Resonance (LSPR) | collagen IV | extracted collagen IV from human placenta | 10 ng/mL | 10–1000 ng/mL | [19] |
ELISA | collagen I | human blood plasma | 5.3 pg/mL | 40–2500 pg/mL | [93] |
Electric Field-Induced Accumulation | collagen I | extracted collagen I from human placenta Bornstein and Traub type I | 3.0 pg/mL | 3–60 pg/mL | [94] |
Cyclic Voltammetry (CV) | collagen I | solution of synthetic collagen I | 0.5 pg/mL | 0.5 pg/mL–0.5 ng/mL | [95] |
EIS (AuNPs transducer) | collagen I | bovine collagen solution I | 0.38 pg/mL | 1.0–5.0 pg/mL | Present work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gwiazda, M.; Bhardwaj, S.K.; Kijeńska-Gawrońska, E.; Swieszkowski, W.; Sivasankaran, U.; Kaushik, A. Impedimetric and Plasmonic Sensing of Collagen I Using a Half-Antibody-Supported, Au-Modified, Self-Assembled Monolayer System. Biosensors 2021, 11, 227. https://doi.org/10.3390/bios11070227
Gwiazda M, Bhardwaj SK, Kijeńska-Gawrońska E, Swieszkowski W, Sivasankaran U, Kaushik A. Impedimetric and Plasmonic Sensing of Collagen I Using a Half-Antibody-Supported, Au-Modified, Self-Assembled Monolayer System. Biosensors. 2021; 11(7):227. https://doi.org/10.3390/bios11070227
Chicago/Turabian StyleGwiazda, Marcin, Sheetal K. Bhardwaj, Ewa Kijeńska-Gawrońska, Wojciech Swieszkowski, Unni Sivasankaran, and Ajeet Kaushik. 2021. "Impedimetric and Plasmonic Sensing of Collagen I Using a Half-Antibody-Supported, Au-Modified, Self-Assembled Monolayer System" Biosensors 11, no. 7: 227. https://doi.org/10.3390/bios11070227
APA StyleGwiazda, M., Bhardwaj, S. K., Kijeńska-Gawrońska, E., Swieszkowski, W., Sivasankaran, U., & Kaushik, A. (2021). Impedimetric and Plasmonic Sensing of Collagen I Using a Half-Antibody-Supported, Au-Modified, Self-Assembled Monolayer System. Biosensors, 11(7), 227. https://doi.org/10.3390/bios11070227