A Biomass Based Photonic Crystal Hydrogel Made of Bletilla striata Polysaccharide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Formation of 3D Photonic Crystal
2.2. Formation of Semi-IPN Photonic Crystal Hydrogel
2.3. Characterization
3. Results
3.1. Characteristics of BSP-PAM Semi-IPN PhCs Hydrogel
3.2. Response of BSP-PAM Semi-IPN PhCs Hydrogel to Ethanol
3.3. Response of BSP-PAM Semi-IPN PhCs Hydrogel to VOCs
3.4. Response of BSP-PAM Semi-IPN PhCs Hydrogel to
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Butt, M.A.; Khonina, S.N.; Kazanskiy, N.L. Recent advances in photonic crystal optical devices: A review. Opt. Laser Technol. 2021, 142, 107265. [Google Scholar] [CrossRef]
- Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 1987, 58, 2059–2062. [Google Scholar] [CrossRef] [Green Version]
- John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 1987, 58, 2486–2489. [Google Scholar] [CrossRef] [Green Version]
- Moirangthem, M.; Engels, T.A.P.; Murphy, J.; Bastiaansen, C.W.M.; Schenning, A. Photonic Shape Memory Polymer with Stable Multiple Colors. ACS Appl. Mater. Interfaces 2017, 9, 32161–32167. [Google Scholar] [CrossRef] [PubMed]
- Moirangthem, M.; Schenning, A. Full Color Camouflage in a Printable Photonic Blue-Colored Polymer. ACS Appl. Mater. Interfaces 2018, 10, 4168–4172. [Google Scholar] [CrossRef] [Green Version]
- Yetisen, A.K.; Qasim, M.M.; Nosheen, S.; Wilkinson, T.D.; Lowe, C.R. Pulsed laser writing of holographic nanosensors. J. Mater. Chem. C 2014, 2, 3569–3576. [Google Scholar] [CrossRef]
- Wang, X.-Q.; Hong, R.; Wang, C.-F.; Tan, P.-F.; Ji, W.-Q.; Chen, S. Ultrafast mechano-responsive photonic hydrogel towards multicolor displays via the pressure sensation. Mater. Lett. 2017, 189, 321–324. [Google Scholar] [CrossRef]
- Hong, R.; Shi, Y.; Wang, X.-Q.; Peng, L.; Wu, X.; Cheng, H.; Chen, S. Highly sensitive mechanochromic photonic gel towards fast- responsive fingerprinting. RSC Adv. 2017, 7, 33258–33262. [Google Scholar] [CrossRef] [Green Version]
- Yetisen, A.K.; Montelongo, Y.; da Cruz Vasconcellos, F.; Martinez-Hurtado, J.L.; Neupane, S.; Butt, H.; Qasim, M.M.; Blyth, J.; Burling, K.; Carmody, J.B.; et al. Reusable, robust, and accurate laser-generated photonic nanosensor. Nano Lett. 2014, 14, 3587–3593. [Google Scholar] [CrossRef]
- Shin, J.; Braun, P.V.; Lee, W. Fast response photonic crystal pH sensor based on templated photo-polymerized hydrogel inverse opal. Sens. Actuators B Chem. 2010, 150, 183–190. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, S.; Liu, Z.; Yu, K.; Wang, C.; Wu, S.; Wang, J.; Pan, X. Fluorescence enhanced microfluidic sensor with CsPbI3 probe for lubricant copper ions on-site rapid detection based on SiO2 inverse opal photonic crystals. J. Lumin. 2021, 238, 118276. [Google Scholar] [CrossRef]
- Joshi, R.G.; Gupta, D.K.; Amesh, P.; Parida, P.K.; Ravindran, T.R. Microgel-hydrogel composite photonic crystals to monitor and extract uranyl ions in aqueous solutions. Microporous Mesoporous Mater. 2021, 319, 111075. [Google Scholar] [CrossRef]
- Li, H.; Xu, Z.; Sun, N. Porphyrin-infiltrated SiO2 inverse opal photonic crystal as fluorescence sensor for selective detection of trace mercury ion. Opt. Mater. 2021, 122, 111696. [Google Scholar] [CrossRef]
- Ding, Y.; Tang, R.; Feng, Y.; Yuan, M.; Li, H.; Yuan, M. Synthesis and characterisation of high resilience collagen-polyacrylamide semi-interpenetrating network hydrogel. Mater. Today Commun. 2022, 32, 103955. [Google Scholar] [CrossRef]
- Rana, J.; Goindi, G.; Kaur, N. Potential prospects of cellulose acetate/acrylic acid-glutaraldehyde semi-interpenetrating networks to remove methylene blue dye from wastewater. Mater. Today Proc. 2022; in press. [Google Scholar] [CrossRef]
- Samanta, H.S.; Ray, S.K. Synthesis, characterization, swelling and drug release behavior of semi-interpenetrating network hydrogels of sodium alginate and polyacrylamide. Carbohydr. Polym. 2014, 99, 666–678. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Tang, N.; Gan, J.; Zhang, X.; Li, Y.; Jia, X.; Cheng, Y. A pH-sensitive semi-interpenetrating polymer network hydrogels constructed by konjac glucomannan and poly (gamma-glutamic acid): Synthesis, characterization and swelling behavior. Int. J. Biol. Macromol. 2021, 185, 229–239. [Google Scholar] [CrossRef]
- Onder, O.C.; Batool, S.R.; Nazeer, M.A. Self-assembled silk fibroin hydrogels: From preparation to biomedical applications. Mater. Adv. 2022, 3, 6920–6949. [Google Scholar] [CrossRef]
- Mushtaq, F.; Raza, Z.A.; Batool, S.R.; Zahid, M.; Onder, O.C.; Rafique, A.; Nazeer, M.A. Preparation, properties, and applications of gelatin-based hydrogels (GHs) in the environmental, technological, and biomedical sectors. Int. J. Biol. Macromol. 2022, 218, 601–633. [Google Scholar] [CrossRef]
- Tamer, Y.; Kosucu, A.; Berber, H. Graphene oxide incorporated chitosan/acrylamide/itaconic acid semi-interpenetrating network hydrogel bio-adsorbents for highly efficient and selective removal of cationic dyes. Int. J. Biol. Macromol. 2022, 219, 273–289. [Google Scholar] [CrossRef]
- Zhang, J.; Ji, W.; Liu, T.; Feng, C. Tuning Syneresis Properties of Kappa-Carrageenan Hydrogel by C2-Symmetric Benzene-Based Supramolecular Gelators. Macromol. Chem. Phys. 2016, 217, 1197–1204. [Google Scholar] [CrossRef]
- Kim, Y.J.; Min, J. Property modulation of the alginate-based hydrogel via semi-interpenetrating polymer network (semi-IPN) with poly(vinyl alcohol). Int. J. Biol. Macromol. 2021, 193, 1068–1077. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.B.; Huang, D.J.; Kang, Y.R.; Wang, A.Q. One-step in situ fabrication of a granular semi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption of Cu2+ ion. Colloids Surf. B Biointerfaces 2013, 106, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Onder, O.C.; Utroša, P.; Caserman, S.; Podobnik, M.; Žagar, E.; Pahovnik, D. Preparation of Synthetic Polypeptide–PolyHIPE Hydrogels with Stimuli-Responsive Behavior. Macromolecules 2021, 54, 8321–8330. [Google Scholar] [CrossRef]
- Nohoji, A.H.A.; Danaie, M. Highly sensitive refractive index sensor based on photonic crystal ring resonators nested in a Mach–Zehnder interferometer. Opt. Quantum Electron. 2022, 54, 574–582. [Google Scholar] [CrossRef]
- Taya, S.A.J.O.-E.R. Ternary photonic crystal with left-handed material layer for refractometric application. Opto-Electron. Rev. 2018, 26, 236–241. [Google Scholar] [CrossRef]
- Li, C.Z.; Liu, S.B.; Kong, X.K.; Bian, B.R.; Zhang, X.Y. Tunable photonic bandgap in a one-dimensional superconducting-dielectric superlattice. Appl. Opt. 2011, 50, 2370–2375. [Google Scholar] [CrossRef]
- Shaheen, S.A.; Taya, S.A. Propagation of p-polarized light in photonic crystal for sensor application. Chin. J. Phys. 2017, 55, 571–582. [Google Scholar] [CrossRef]
- Vijaya Shanthi, K.; Robinson, S. Two-dimensional photonic crystal based sensor for pressure sensing. Photonic Sens. 2014, 4, 248–253. [Google Scholar] [CrossRef] [Green Version]
- Trabelsi, Y. Output multichannel optical filter based on hybrid photonic quasicrystals containing a high-Tc superconductor. Photonics Nanostruct.-Fundam. Appl. 2019, 36, 100724. [Google Scholar] [CrossRef]
- Desimoni, E.; Brunetti, B. X-ray Photoelectron Spectroscopic Characterization of Chemically Modified Electrodes Used as Chemical Sensors and Biosensors: A Review. Chemosensors 2015, 3, 70–117. [Google Scholar] [CrossRef] [Green Version]
- Panda, A.; Pukhrambam, P.D.; Wu, F.; Belhadj, W. Graphene-based 1D defective photonic crystal biosensor for real-time detection of cancer cells. Eur. Phys. J. Plus 2021, 136, 809. [Google Scholar] [CrossRef]
- Upadhyay, A.; Singh, S.; Sharma, D.; Taya, S.A. An ultra-high birefringent and nonlinear decahedron photonic crystal fiber employing molybdenum disulphide (MoS2): A numerical analysis. Mater. Sci. Eng. B 2021, 270, 115236. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, M.; Jiang, L.; Xie, Q.; Yuan, H.; Yang, Y.; Zafar, S.; Liu, Y.; Jian, Y.; Li, B.; et al. The medicinal uses of the genus Bletilla in traditional Chinese medicine: A phytochemical and pharmacological review. J. Ethnopharmacol. 2021, 280, 114263. [Google Scholar] [CrossRef]
- Chen, Z.; Cheng, L.; He, Y.; Wei, X. Extraction, characterization, utilization as wound dressing and drug delivery of Bletilla striata polysaccharide: A review. Int. J. Biol. Macromol. 2018, 120, 2076–2085. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Li, Q.; Wang, Y.; Wang, C. Two natural glucomannan polymers, from Konjac and Bletilla, as bioactive materials for pharmaceutical applications. Biotechnol. Lett. 2015, 37, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zeng, J.; Wang, B.; Cheng, Z.; Xu, J.; Gao, W.; Chen, K. Structural characterization and antioxidant activities of Bletilla striata polysaccharide extracted by different methods. Carbohydr. Polym. 2021, 266, 118149. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Wang, W.; Wang, Y.; Du, T.; Shen, W.; Tang, H.; Wang, Y.; Yin, H. Bletilla striata polysaccharide inhibits angiotensin II-induced ROS and inflammation via NOX4 and TLR2 pathways. Int. J. Biol. Macromol. 2016, 89, 376–388. [Google Scholar] [CrossRef]
- Yu, H.-S.; Dai, B.-L.; Qian, C.-D.; Ding, Z.-S.; Jiang, F.-S.; Jin, B.; Li, M.-Y. Antibacterial Activity of Chemical Constituents Isolated from Fibrous Roots of Bletilla striata. J. Chin. Med. Materials 2016, 39, 544–547. [Google Scholar]
- Zhan, X.; Jia, L.; Niu, Y.; Qi, H.; Chen, X.; Zhang, Q.; Zhang, J.; Wang, Y.; Dong, L.; Wang, C. Targeted depletion of tumour-associated macrophages by an alendronate-glucomannan conjugate for cancer immunotherapy. Biomaterials 2014, 35, 10046–10057. [Google Scholar] [CrossRef]
- Liu, R.; Teng, X.J.; He, J.F.; Xiao, S.S.; Yuan, Z.B.; Li, X.J.; Gao, X.S.; Zhou, B.M. Partial splenic embolization using Bletilla striata particles for hypersplenism in cirrhosis: A prospective study. Am. J. Chin. Med. 2011, 39, 261–269. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Jiang, F.S.; Wang, Y.; Ding, Z.S. Present Status and Sustainable Development of Rhizoma Bletillae Industry. Chin. Arch. Tradit. Chin. Med. 2012, 30, 2264–2267. [Google Scholar] [CrossRef]
- Wu, S.H.; Wang, J.B.; Kai, T.; Zhu, N.; Yang, J.; Ji, S.C.; Zhang, M.; Yang, A.D. Study on Ultrasonic Extraction Technology and Antioxidant Activity of Bletilla striata Polysaccharides Extraction Process. World Chin. Med. 2020, 15, 2556–2560. [Google Scholar] [CrossRef]
- Bokare, A.; Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 2014, 275, 121–135. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, B.; Zhang, W.; Liu, Y.; Xue, M.; Qiu, L.; Meng, Z. A Biomass Based Photonic Crystal Hydrogel Made of Bletilla striata Polysaccharide. Biosensors 2022, 12, 841. https://doi.org/10.3390/bios12100841
Sun B, Zhang W, Liu Y, Xue M, Qiu L, Meng Z. A Biomass Based Photonic Crystal Hydrogel Made of Bletilla striata Polysaccharide. Biosensors. 2022; 12(10):841. https://doi.org/10.3390/bios12100841
Chicago/Turabian StyleSun, Bo, Wenxin Zhang, Yangyang Liu, Min Xue, Lili Qiu, and Zihui Meng. 2022. "A Biomass Based Photonic Crystal Hydrogel Made of Bletilla striata Polysaccharide" Biosensors 12, no. 10: 841. https://doi.org/10.3390/bios12100841
APA StyleSun, B., Zhang, W., Liu, Y., Xue, M., Qiu, L., & Meng, Z. (2022). A Biomass Based Photonic Crystal Hydrogel Made of Bletilla striata Polysaccharide. Biosensors, 12(10), 841. https://doi.org/10.3390/bios12100841